期刊文献+

采用线膨胀系数可控ZrO_2-TiO_2陶瓷模具的钛合金高精度超塑成形

High Precision Superplastic Forming of Titanium Alloy Using ZrO_2-TiO_2 Ceramic Die with Controllable Linear Expansion Coefficient
下载PDF
导出
摘要 对线膨胀系数可控的ZrO2-TiO2陶瓷模具及钛合金高精度超塑成形进行了系统研究。探讨了TiO2体积分数和相对密度对ZrO2-TiO2陶瓷的线膨胀系数的影响规律,并引入相对密度修正模型——Turner模型来准确预测复合陶瓷材料的线膨胀系数。采用压痕法检测了与TC4钛合金等膨胀系数的ZrO2-TiO2陶瓷模具的超塑成形精度。在925℃下,利用ZrO2-TiO2陶瓷模具进行超塑成形,其使用性能良好。结果表明:ZrO2-TiO2陶瓷的线膨胀系数随TiO2体积分数的增加而减小,随相对密度的增加而增加。采用线膨胀系数优化的ZrO2-TiO2陶瓷模具,成形精度误差大幅降低,不超过0.1%,且陶瓷模具具有足够的热机械性能进行超塑成形,使用性能优良。 The ZrO2-TiO2 ceramic die with controllable linear expansion coefficient (LEC) and the high precision superplastic forming were studied, The influence of TiO2 fraction and relative density on linear expansion coefficient of ZrO2-TiO2 ceramic was analyzed. The Turner model was modified and the relative density was introduced into the model. The forming accuracy of ceramic die with the similar LEC to TC4 titanium alloy was measured. The ZrO2 -TiO2 deep cylinder ceramic die was fabricated and its performance was e- valuated by the superplastic forming experiment at 925~C. The results show that the LEC decreases with the increment of volume frac- tion of TiO2 and increases with the rising of relative density. The modified Turner model more accurately predicted. Using the ZrO2- TiO2 ceramic die with optimal LEC, the forming accuracy deviation significantly reduced and not exceed of 0. 1%. The ceramic die owns enough sufficient thermal mechanical properties and excellent performance.
出处 《航空材料学报》 EI CAS CSCD 北大核心 2012年第4期8-14,共7页 Journal of Aeronautical Materials
基金 哈尔滨工业大学重点实验室开放基金(中央高校基本科研业务费专项资金资助 HIT.KLOF.2010043)
关键词 超塑成形 陶瓷模具 成形精度 线膨胀系数(LEC) TC4钛合金 superplastic forming ceramic die forming accuracy linear expansion coefficient (LEC) TC4 titanium alloy
  • 相关文献

参考文献14

  • 1LUO Y, LUCKEY S G, FRIEDMAN P A. Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation [J]. International Journal of Machine Tools & Manufacture, 2008, 48(12/13): 1509-1518.
  • 2XING H L, WANG C W, ZHANG, K F. Recent development in the mechanics of Superplasticity and its applications [J]. Journal of Materials Processing Technology, 2004,151(1/2/3): 196-202.
  • 3CHARIT I, MISHRA R S. High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing [J]. Materials and Engineering (A),2003,359(1/2):290-296.
  • 4丁桦,张凯锋.材料超塑性研究的现状与发展[J].中国有色金属学报,2004,14(7):1059-1067. 被引量:33
  • 5韩文波,张凯锋,王国峰.Ti-6Al-4V合金多层板结构的超塑成形/扩散连接工艺研究[J].航空材料学报,2005,25(6):29-32. 被引量:20
  • 6CUTARD T, CAILLEUX E, LOURS P, BERNHART G. Structural and mechanical properties of a refractory concrete for superplastic forming tools [J]. Ind Ceram, 1999, 19(7/8):100-105.
  • 7BATE P S, SHAW G R, HANCOCK M A, et al. Superplastic forming with ceramic lost-wax dies [J]. J Mater Proc Technol, 1995, 47(3/4):361-368.
  • 8MURAKAMI H. Dental application of superplastic forming for titanium complete denture bases[J]. Aichi Gakuin Daigaku Shigakkai Shi, 1989, 27(3):61-69.
  • 9CURTIS R V. Stress-strain and thermal expansion characteristics of a phosphatebonded investment mould material for dental superplastic forming [J]. J Dentistry, 1998, 296(3):251-258.
  • 10SANDERS D G. Reinforced ceramic dies for superplastic forming operations[J]. Journal of Materials Engineering and Performance, 2004, 48(6): 350-355.

二级参考文献4

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部