期刊文献+

不同量骨水泥强化新型空心椎弓根螺钉的体外生物力学研究 被引量:12

Influence of the volume of bone cement on the reinforcement of a novel canulated pedicle screw:a biomechanical study in vitro
下载PDF
导出
摘要 目的探讨自行设计的可注射骨水泥椎弓根螺钉(bone cement injectable canulated pedicle screw,CICPS)在注入不同量骨水泥时的骨水泥弥散情况及生物力学稳定性。方法按临床置钉标准程序将CICPS、韩国DTPSTM椎弓根螺钉和普通椎弓根螺钉植入骨质疏松松质骨模型(骨密度0.16 g/cm3,n=7)中,分别加压注射不同体积骨水泥(1、2、3、5ml)增强2种空心螺钉,普通螺钉作为对照组。X线、CT观察骨水泥弥散形态;最大轴向拔出力实验分析骨水泥使用量与最大轴向拔出力之间的关系;比较3种螺钉生物力学稳定性的特点。结果 X线观察螺钉均未发生骨水泥向后泄漏。X线、CT三维重建显示骨水泥从CICPS 3个侧孔中流出,分布均匀;而骨水泥主要从韩国DTPSTM椎弓根螺钉的近端侧孔流出,远端侧孔较少。CICPS各组(1、2、3、5 ml)最大轴向拔出力分别为(140.3±15.9)、(197.1±9.8)、(215.4±10.7)、(237.0±23.6)N;DTPSTM各组(1、2、3、5 ml)最大轴向拔出力分别为(114.3±17.7)、(180.5±13.6)、(207.2±30.0)、(291.3±25.1)N。经骨水泥增强的空心椎弓根螺钉最大轴向拔出力显著高于普通螺钉[(28.5±4.0)N,P<0.05]。空心螺钉最大轴向拔出力随骨水泥使用量的增加而增大。骨水泥使用量为1、2、3 ml时,CICPS的生物力学稳定性显著高于DTPSTM(P<0.05)。骨水泥使用量为5 ml时,DTPSTM的生物力学稳定性高于CICPS(P<0.05)。结论在骨质疏松椎体模型中,骨水泥增强可显著增加CICPS的锚定作用;骨水泥使用量在1~3 ml的情况下,其稳定性优于同类产品。 Objective To evaluate the bone cement distribution and signed bone cement injectable canulated pedicle screw (CICPS). Methods biomechanical stability of self-de- CICPS, DTPS? and solid pedicle screws were implanted into osteoporotic bone models (density: 0.16 g/cm3, n = 7 ) according to the clinical standard procedure. Four different volumes of bone cement ( 1, 2, 3 and 5 ml) were used to reinforce CICPS and DTPS?, respectively, and the solid pedicle screws were used as control. X-ray and CT were applied to observe the bone cement distribution in different groups. Maximum axial pullout strength test was used to analyze the relationship between the bone cement volume and maximum axial pullout strength, and the biomechanical stabilities of CICPS, DTPS? and solid pedicle screws were compared. Results X-ray showed that there was no bone cement rear leakage in all screws. Three-dimensional reconstruction of X-ray and CT showed bone cement well and widely distributed through the three side holes of the CICPS in bone models. Bone cement flowed out mainly through the proximal side hole of the DTPS? but rarely through the distal side hole. The maximum axial pullout strength of each group was as follows : solid pedicle screws : (28.5± 4.0) N ; CICPS : 1 ml (140.3±15.9) N, 2 ml (197.1 ±9.8) N, 3 ml (215.4±10.7) N and5 ml (237.0±23.6) N; and DTPS? : 1 ml (114.3±17.7) N, 2 ml ( 180.5 ±13.6) N, 3 ml (207.2±30.0) N and 5 ml (291.3±25.1 ) N. The maximum axial pullout strength of the CICPS and DTPS? after reinforced by bone cement was significantly greater than that of the control group, and the strength increased along with the increase of bone cement volume. When the volume of bone cement was 1, 2 and 3 ml, the biomechanical stability of the CICPS was higher than that of the DTPS? (P 〈 0.05 ). When the volume of bone cement was 5 ml, the biomechanical stability of the DTPS? was higher than that of the CICPS (P 〈 0. 05). Conclusion It is effective to enhance the biomechanical stability of CICPS by bone cement reinforcement in osteoporotic bone model. When the volume of bone cement for clinical treatment was 1 -3 ml, the CICPS is proved safer and more stable than otherproducts.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2012年第16期1626-1629,共4页 Journal of Third Military Medical University
关键词 椎弓根螺钉 骨质疏松 PMMA强化 生物力学 pedicle screw osteoporosis PMMA I)iomechanies
  • 相关文献

参考文献19

  • 1Cook S D, Salkeld S I, Stanley T, et al. Biomechanical study of pedicle screw fixation in severely osteoporotic bone [ J ]. Spine J, 2004, 4 (4) : 402 -408.
  • 2Schwartz Z, Raz P, Zhao G, et al. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo [ J ]. J Bone Joint Surg Am, 2008, 90( 11 ) : 2485 -2498.
  • 3Burval D J, McLain R F, Milks R, et al. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength [J]. Spine ( Phila Pa 1976 ), 2007, 32 (10) : 1077 - 1083.
  • 4Wang X Y, Dai L Y, Xu H Z, et al. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: an in vitro study[J]. J Clin Neurosci, 2008, 15(3) : 286 -290.
  • 5Wu Z X, Gao M X, Sang H X, et al. Surgical treatment of osteoporetic thoracolumbar compressive fractures with open vertebral cement augmentation of expandable pedicle screw fixation: a biomechanical study and a 2- year follow-up of 20 patients[J]. J Surg Res, 2012, 173(1) : 91 -98.
  • 6Cook S D, Salkeld S L, Whitecloud T S 3rd, et al. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design[J]. J Spinal Disord, 2000, 13(3) : 230 -236.
  • 7Takigawa T, Tanaka M, Konishi H, et al. Comparative biomechanical analysis of an improved novel pedicle screw with sheath and bone cement[J]. J Spinal Disord Tech, 2007, 20(6) : 462 -467.
  • 8Yazu M, Kin A, Kosaka R, et al. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine[J]. J Orthop Sci, 2005, 10( 1 ) : 56 -61.
  • 9Moon B J, Cho B Y, Choi E Y, et al. Polymethylmethaerylate-augmented screw fixation for stabilization of the osteoporotic spine : a three- year follow-up of 37 patients [J]. J Korean Neurosurg Soc, 2009, 46 (4) : 305 -311.
  • 10Becker S, Chavanne A, Spitaler R, et al. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines[J]. Eur Spine J, 2008, 17(11) : 1462 -1469.

二级参考文献46

  • 1邱贵兴,徐宏光,王以朋,沈建雄,翁习生,仉建国,赵宇.青少年特发性脊柱侧凸术后失代偿原因分析及处理[J].中华骨科杂志,2003,23(7):414-417. 被引量:24
  • 2章凯,王智运,尹庆水,夏虹,吴增晖,潘刚明,权日,昌耘冰,麦小红,李修往.骨科手术导航系统引导腰椎椎弓根螺钉植入的效果[J].第三军医大学学报,2005,27(5):443-444. 被引量:8
  • 3丁宇,阮狄克,李超,石金峰,付裕.腰骶椎弓根螺钉翻修及强化固定后稳定性比较[J].中国矫形外科杂志,2005,13(22):1726-1729. 被引量:2
  • 4Soshi S, Shiba R, Komlo H, el al. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine, 1991, 16:1335-1341.
  • 5Zindriek MR, Wiltse LL, Widell EH, et al. A biomeehanieal study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res, 1986(203): 99-112.
  • 6Abshire BB, Mclain RF, Valdevit A, et al. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J, 2001, 1: 408-414.
  • 7Stanford RE, Loefler AH, Stanford PM, et al. Muhiaxial pedicle screw designs: static and dynamic mechanical testing. Spine, 2004, 29: 367-375.
  • 8Cook SD, Salkeld SL, Stanley T, et al. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J, 2004, 4: 402-408.
  • 9Yazu M, Kin A, Kosaka R, et al. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci, 2005, 10: 56-61.
  • 10Takigawa T, Tanaka M, Konishi H, et al. Comparative biome- chanical analysis of an improved novel pedicle screw with sheath and bone cement. J Spinal Disord Tech, 2007, 20: 462-467.

共引文献27

同被引文献162

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部