期刊文献+

拓扑约束结合匈牙利算法在高密度神经干细胞追踪中的研究 被引量:1

Tracking of Neural Stem Cells in High Density Image Sequence Based on Topological Constraint Combined with Hungarian Algorithm
原文传递
导出
摘要 神经干细胞(NSCs)的运动分析是细胞学和生物学研究中重要的组成部分之一,而对大量NSCs同时进行追踪是细胞运动研究的主要难点。为了进一步提高高密度NSCs追踪算法的准确性,本文提出了一种新的基于分割、结合拓扑约束和数据关联的细胞追踪方法。首先针对实验所用的两组细胞图像序列的特点,分别采用了不同的分割方法。然后利用拓扑约束完成相邻两帧中所有细胞的数据关联并建立系数矩阵,最后对该系数矩阵利用匈牙利算法实现细胞的最优匹配,以此模式从序列的前两帧到最后一帧完成细胞追踪。实验结果表明,本文算法与单独利用拓扑约束进行细胞追踪的方法相比,有更好的追踪效果,准确性更高,序列I和序列Ⅱ的最终追踪准确率分别提高了10.17%和4%。 Analysis of neural stem cells' movements is one of the important parts in the fields of cellular and biologi- cal research. The main difficulty existing in cells' movement study is whether the cells tracking system can simulta- neously track and analyze thousands of neural stem cells (NSCs) automatically. We present a novel cells' tracking al- gorithm which is based on segmentation and data association in this paper, aiming to improve the tracking accuracy further in high density NSCs' image. Firstly, we adopted different methods of segmentation base on the characteris- tics of the two cell image sequences in our experiment. Then we formed a data association and constituted a coeffi- cient matrix by all cells between two adjacent frames according to topological constraints. Finally we applied The Hungarian algorithm to implement inter-cells matching optimally. Cells' tracking can be achieved according to this model from the second frame to the last one in a sequence. Experimental results showed that this approaching method has higher accuracy compared with that using the topological constraints tracking alone. The final tracking accuracies of average of sequence I and sequence 1I have been improved 10. 17 ~ and 4 ~, respectively.
出处 《生物医学工程学杂志》 CAS CSCD 北大核心 2012年第4期597-603,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60875020)
关键词 神经干细胞 细胞追踪 拓扑约束 匈牙利算法 数据关联 Neural stem cells (NSCs) Cell's tracking Topological eonstraint Hungarian algorithm Data assoeia-
  • 相关文献

参考文献12

  • 1PADFIELD D, RITTSCHER J, ROYSAM B. Coupled mini- mum-cost ? ow cell tracking for high-throughput quantitative analysis[J]. Medical Image Analysis, 2011, 15(4) : 650-668.
  • 2PADFIELD D, RITTSCHER J, THOMAS N, et al. Spatio- temporal cell cycle phase analysis using level sets and fast marching methods[J]. Med Image Anal, 2009, 13(1): 143- 155.
  • 3SIRAKOV N M, KOJOUHAROV H, SIRAKOVA N N. Tracking neutro phil cells by active contours with coherence and boundary improvement filter[C]//Image Analysis amp; Interpretation (Ssiai), 2010 IEEE Southwest Symposium on, 2010: 5-8.
  • 4TANG C M, DANG H L, SU X H. Multi-thread, incre- ment-bandwidth and weighted mean-shift algorithm for neural stern cells tracking[C]//Intelligent Information Technology Application, 2008. IITA'08. Second International Symposi-um on, I, 2008: 576-579.
  • 5LI K, MILLER E D, CHEN M, et al. Cell population track- ing and lineage construction with spatiotemporal context[J]. Med Image Anal, 2008, 12(5) : 546-566.
  • 6KACHOUIE N, FIEGUTH P, RAMUNAS J, et al. Proba- bilistie model-based cell tracking[J]. International Journal of Biomedical Imaging, 2006, 2006(12186): 1-10.
  • 7AL-KOFAHI O, RADKE R J, BADRINATH R, et al. Au- tomaled semantic analysis of changes in image sequences of neurons in cuhure[J]. IEEE Trans Biomed Eng, 2006, 53 (6) : 1109-1123.
  • 8CHEN Y, LADI E, HERZMARK P, et al. Automated 5-D analysis of cell migration and interaction in the thymie cortex from time-lapse sequences of 3-D multi-channel multi-photon images[J]. JlmmunolMethods, 2009, 340(1): 65-80.
  • 9ZHANG LL, XIONG HK, ZHANGK, etal. Graph theory application in cell nuleus segmentation,tracking and identifica- tion[C]// Proceedings of the 7th IEEE International Confer- ence on Bioinformatics and Bioengineering, BIBE, 2007: 226- 232.
  • 10TANG C M, MA L, XU D B, et al. Topological constraint in high density ceils, tracking of image sequences[J]. Software Tools and Algorithms for Biological Systems. Apr. 2011, 696 (3):255-262.

二级参考文献16

  • 1汤春明,于翔.关于显微运动细胞追踪的问题与策略[J].武汉理工大学学报,2004,26(9):81-84. 被引量:1
  • 2Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamihon-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79 (1) : 12-49.
  • 3Kuijper A, Heise B. An automatic cell segmentation method for differential interference contrast microscopy [C]// Proceedings of the 19th International Conference on Pattern Recognition, Newyork, 2008:1-4.
  • 4Yan P K, Zhou X B, Shah M, etal. Automatic segmentation of high-throughput RNAi fluorescent cellular images [J].IEEE Transactions Information Technology in Biomedicine, 2008, 12(1): 109-117.
  • 5Li C M, Xu C Y, Gui C F, etal. Level set evolution without re-initialization: a new variational formulation [C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Newyork, 2005: 430-436.
  • 6Evans L C. Partial differential equations [M]. Providence: American Mathematical Society Press, 1998.
  • 7Sethian J A. Level set methods and fast marching methods [M]. Cambridge: Cambridge University Press, 1996.
  • 8Smereka P. Semi-implicit level set methods for curvature and surface diffusion motion [J]. Journal of Scientific Computing, 2003, 19(1/3) : 439-456.
  • 9Arnold VI. Geometrical methods in the theory of ordinary differential equations[M]. New York: Springer, 1983.
  • 10Otsu N. A threshold selection method from gray level histogram [J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 62-66.

共引文献6

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部