期刊文献+

基于周期元分析的运动伪迹消除方法——以心电信号为例 被引量:4

Study on Motion Artifact Reduction Based on Periodic Component Analysis Using ECG as a Case
原文传递
导出
摘要 运动伪迹是动态生理信号的主要干扰源,而在穿戴式检测系统中,由于干电极的使用,干扰更为严重。本文根据运动伪迹的时域瞬态性和生理信号固有周期性的特点,研究了一种基于周期元分析的运动伪迹抑制方法。该方法首先运用多分辨率分解将单通道信号转化为多通道信号,再实施周期元分析。然后以实测心电(ECG)信号为例,与基于经验模态分解和自适应滤波的消除方法进行分析比较,发现周期元分析的优势明显,可更有效地分离正常生理信号和运动伪迹。作为一种时域分析方法,周期元分析可实现频谱混叠信号的分离,对受污染ECG信号的波形特征实现有效复原,并可推广到其他生理信号的处理中。 Motion artifacts are a main interference source of ambulatory physiology signals. The interference in wear- able detection systems is more serious because of using dry electrodes. On account of the instantaneity in motion arti- facts and periodicity in physiological signal, we presented a new method based on periodic component analysis for motion artifact reduction. The single channel signal is transformed into multi-channel signal with multi resolution a- nalysis, and then periodic component analysis can help us to separate the normal physiological signal from motion ar- tifacts. A case study in electrocardiogram (ECG) demonstrates that periodic component analysis is better than the empirical mode decomposition and adaptive filtering methods. Periodic component analysis as a time domain method can discriminate the signal with frequency aliasing, and recover the ECG waveform feature corrupted. This method can be easily extended to other physiological signal processing.
出处 《生物医学工程学杂志》 CAS CSCD 北大核心 2012年第4期639-644,共6页 Journal of Biomedical Engineering
基金 湖北省自然科学基金资助项目(2009CDB281)
关键词 周期元分析 运动伪迹 集成经验模态分解 心电图 Periodic component analysis Motion artifact Ensemble empirical mode decomposition Electrocardio-gram (ECG)
  • 相关文献

参考文献14

  • 1CHI Y M, JUNG T P, CAUWENBERGHS G. Dry-contact and noncontact biopotential electrodes: methodological review [J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 106- 119.
  • 2YOON S W, MIN S D, YUN Y H, et al. Adaptive motion artifacts reduction using 3-axis aecelerometer in E-textile ECG measurement system[J]. J Med Syst, 2008, 32(2) : 101-106.
  • 3MARTINI N, MILANESI M, VANELLO N, et al. A real- time adaptive filtering approach to motion artefacts removal from ECG signals[J]. Int J Biomed Eng Technol, 2010, 3(3- 4) : 233-245.
  • 4林绍杰,赖丽娟,吴效明.基于阻抗检测的自适应消除心电运动伪迹方法[J].生物医学工程学杂志,2010,27(3):529-532. 被引量:7
  • 5MATTEO M, MARTINI N, VANELLO N, et al. Independ- ent component analysis applied to the removal of motion arti- facts from electrocardiographic signals [J]. Med Biol Eng Comput, 2008, 46(3) :251-261.
  • 6CHAWLA M P S. PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: a survey and comparison [J]. AppI Soft Comput, 2011, 11(2) :2216-2226.
  • 7彭诚,叶大田.小波变换模极大值重建方法消除胃电检测中的运动伪迹[J].清华大学学报(自然科学版),2007,47(3):428-431. 被引量:2
  • 8张坤,焦腾,付峰,张雯,董秀珍.运用小波模极大值滤波算法消除光电容积脉搏波中的运动干扰[J].仪器仪表学报,2009,30(3):586-589. 被引量:12
  • 9SAUL L K, ALLEN J B. Periodic component analysis:an ei- genvalue method for representing periodic structure in speech [C]// Advances in Neural Information Processing Systems, 2001: 807-813.
  • 10SAMENI R, JUTTEN C, SHAMSOLLAHI M B. Multi- channel electrocardiogram decomposition using periodic com- ponent analysls[J]. IEEE Trans Biomed Eng, 2008, 55(8): 1935-1940.

二级参考文献29

  • 1YAO J CH, WARREN S. A novel algorithm to separate motion artifacts from photoplethysmographic signals obtained with a reflectance pulse oximeter[ C]. Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, 2004:2153-2156.
  • 2GIBBS P, ASADA H H. Reducing motion artifact in wearable bio-sensors using MEMS accelerometers for active noise cancellation [ C ]. 2005 American Control Conference, Portland, OR, USA, 2005:1581-1586.
  • 3WEBSTER J G. Design of pulse oximeters, philadelphia [ M ]. PA : Institute of Physics, 1997.
  • 4SEVICK E M, CHANCE B, LEIGH J, et al. Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation [ J ]. Analytical Biochemistry, 1991 : 143-151.
  • 5SCHMITT J M. Simple Photon diffusion analysis of the effects of multiple scattering on pulse oximetry[J].IEEE Transaction on Biomedical Engineering, 1991,38 (12) : 1194-1203.
  • 6YOSHIYA Y, SHIMADA Y, TANAKA K. Spectrophotometric monitoring of arterial oxygen saturation in the finger tip [ J]. Med. Biol. Eng. Compute, 1980, 18: 27 -32.
  • 7YAN Y SH, ZHANG Y T. An efficient motion-resistant method for wearable pulse oximeter [J]. IEEE Transactions on information technology in biomedicine,2008,12 (3) :399-405.
  • 8MALLAT, HWANG W. Singularity detection and processing with wavelet [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 38 ( 2 ) : 617-643.
  • 9MALLAT S, ZHONE S. Characterization of Signals from Multiscale Edges [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 ( 2 ) :710-732.
  • 10LEE S M, KIM K K, SUK P K. Wavelet approach to artifact noise removal from capacitive coupled electrocardiograph [C]. USA: Engineering in Medicine and Biology Society, 2008: 2944-2947.

共引文献18

同被引文献19

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部