摘要
运动伪迹是动态生理信号的主要干扰源,而在穿戴式检测系统中,由于干电极的使用,干扰更为严重。本文根据运动伪迹的时域瞬态性和生理信号固有周期性的特点,研究了一种基于周期元分析的运动伪迹抑制方法。该方法首先运用多分辨率分解将单通道信号转化为多通道信号,再实施周期元分析。然后以实测心电(ECG)信号为例,与基于经验模态分解和自适应滤波的消除方法进行分析比较,发现周期元分析的优势明显,可更有效地分离正常生理信号和运动伪迹。作为一种时域分析方法,周期元分析可实现频谱混叠信号的分离,对受污染ECG信号的波形特征实现有效复原,并可推广到其他生理信号的处理中。
Motion artifacts are a main interference source of ambulatory physiology signals. The interference in wear- able detection systems is more serious because of using dry electrodes. On account of the instantaneity in motion arti- facts and periodicity in physiological signal, we presented a new method based on periodic component analysis for motion artifact reduction. The single channel signal is transformed into multi-channel signal with multi resolution a- nalysis, and then periodic component analysis can help us to separate the normal physiological signal from motion ar- tifacts. A case study in electrocardiogram (ECG) demonstrates that periodic component analysis is better than the empirical mode decomposition and adaptive filtering methods. Periodic component analysis as a time domain method can discriminate the signal with frequency aliasing, and recover the ECG waveform feature corrupted. This method can be easily extended to other physiological signal processing.
出处
《生物医学工程学杂志》
CAS
CSCD
北大核心
2012年第4期639-644,共6页
Journal of Biomedical Engineering
基金
湖北省自然科学基金资助项目(2009CDB281)
关键词
周期元分析
运动伪迹
集成经验模态分解
心电图
Periodic component analysis
Motion artifact
Ensemble empirical mode decomposition
Electrocardio-gram (ECG)