期刊文献+

关于简单图最大匹配的矩阵算法研究 被引量:1

Research on Matrix Algorithm of the Greatest Matching of the Simple Graph
下载PDF
导出
摘要 定义了简单图匹配边的匹配优先指数、竞争集、匹配余集及匹配余图等重要概念,从最大匹配的定义及匹配边与非匹配边的竞争关系着手,在图的关联矩阵基础上,提出了求无权简单图最大匹配的一种操作简单、编程容易的新算法——"表单作业法". In this paper,for a simple graph the concepts of matching priority index of a matching edge,competitive set,matching coset and matching co-graph,etc,are defined.By using the definition of maximum matching and the competitive relation between matching and non-matching edges,based on the correlative matrix of a graph,a new algorithm named "form-operating method" is creatively proposed for non-weighted simple graphs.In using this method to calculate the maximum matching,the operation is simple and the programming is quite easy.
作者 段春生 庄刘
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期478-481,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(61079022)资助项目 中国民航飞行学院科研基金(J2010-44和J2010-48)
关键词 简单图 关联矩阵 最大匹配 表单作业法 simple graph correlation matrix maximum matching form-operating method
  • 相关文献

参考文献15

  • 1Umeyama S. An eigendecomposition approach to weighted graph matching problem[ J ]. IEEE Trans Patt Anal Mach Intel, 1988,10(5) :695 -703.
  • 2Almohamad H A, Duffuaa S O. A linear programming approach for the weighted graph matching problem [ J ]. IEEE Trans Patt Anal Mach Intel,1993,15(5) :522 -525:.
  • 3Gold S, Rangarian A. A graduated assignment algorithm for graph matching[ J]. IEEE Trans Patt Anal Mach Intel, 1996,18 (4) : 337 - 388.
  • 4Zavlanos M M, Pappas G J. A dynamical systems approach to weighted graph matching[J]. Automatica,2008,44(11) :2817 -2824.
  • 5Yuan J J. Induced matching extendable graph [ J ]. J Graph Theo, 1998,28:203 - 313.
  • 6王勤,原晋江.导出匹配可扩图的度和条件(英文)[J].郑州大学学报(自然科学版),2000,32(1):19-21. 被引量:2
  • 7Rizzi R. A short proof of Ktnig' s Matching Theorem[J]. J Graph Theo,2000,33:138-139.
  • 8田俊华.求二部图完全匹配的一种回溯算法[J].榆林学院学报,2003,13(3):14-15. 被引量:2
  • 9代西武,李群高.求偶图最大匹配的矩阵算法[J].北京建筑工程学院学报,2003,19(2):75-78. 被引量:2
  • 10田晓明,朱绍文.关于元向二部图最大匹配集矩阵算法的研究[J].湛江师范学院学报:自然科学版,2000,21(2):69-73.

二级参考文献20

  • 1D. Koenig, Graphs and matrices ( in Hungarian) [ J ]. Mat. Fiz.Lapok, 1931, 38: 116-119.
  • 2Romeo Rizzi, A Short Proof of Koenig's Matching Theorem[J ].J. Graph Theory, 2000,33:138 - 139.
  • 3D. Koenig, Theorie der Endlichen und Unendlichen Grahen[ M ].New york, Chelsea, 1950.
  • 4J. A. Bondy mad U. S. Murty, Graph Theory with applications[M]. American Elsevier, New York, 1996.
  • 5柳柏濂.组合矩阵论[M].北京:科学出版社,1998..
  • 6LAWLER E L,LENSTRA J K,RINNOOY A H G,et al.Sequencing and scheduling:algorithms and complexity[M]//GRAVES S C,RINNOOY KAN A H G,ZIPKIN P H.Handbooks in Operations Research and Management Science,Vol 4:Logistics of Production and Inventory.Amsterdam:North Holland,1993:445-522.
  • 7WANG Shi-ying,YUAN Jin-jiang,LIU Yan.On the maximum matching graph of a graph[J].OR Transactions,1998,2(2):13-17.
  • 8EROH L,SCHULTZ M.Matching graphs[J].J Graph Theory,1998,29(2):73-86.
  • 9HOPCROFT J E,KARP R M.An n^5/2 algorithm for maximum matching in bipartite graphs[J].SIAM Journal on Computing,1973,2(4):225-231.
  • 10王树禾.图论[M].北京:科学出版社,2005.

共引文献16

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部