期刊文献+

一类具有非线性传染率、隔离率的SIRS传染病模型解的存在性研究 被引量:4

Study on the Existence of Solution to an SIRS Epidemic Model with Nonlinear Contact and Screening Rates
下载PDF
导出
摘要 染病年龄结构数学模型已经成为应用数学领域的研究热点之一.染病年龄的引入使传染率依赖于染病年龄,这样所建立的模型更适合染病期较长的疾病,如AIDS等.在形式上,这类模型是常微分方程和偏微分方程相结合的微分方程组.对这类模型非负解存在性及惟一性研究具有重要的理论意义和应用价值,正被广大学者关注.建立了具有一般非线性接触率、一般非线性隔离率及染病年龄结构SIRS传染病模型并综合运用Bellman-Gronwall引理、不动点定理及解的延拓定理等多种数学方法证明模型全局非负解的存在性及惟一性. One of study focuses in applied mathematics is the mathematical model of infection-age dependence which is more appropriate for infections diseases with long infection-age such as AIDs,etc,since the incidence rate is dependent on infection-age.The model consists of combined system of ordinary and partial differential equations.The existence and uniqueness of solution to the system have been taken with theoretical significance and applicable value.In the present paper,an SIRS epidemic model with general nonlinear contact rate,general screening rate and infection-age dependence is first formulated.Then,by using the mathematical methods of Bellman-Gronwall lemma,the fixed point theorem,the extension thoerem,and so on,the existence and uniqueness of the globally non-negative solultion are discussed.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期482-489,共8页 Journal of Sichuan Normal University(Natural Science)
基金 陕西省自然科学基金(2009JM1002)资助项目
关键词 隔离率 接触率 SIRS传染病模型 染病年龄 screening rate contact rate SIRS epidemic model infection-age dependence
  • 相关文献

参考文献3

二级参考文献30

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998..
  • 2Rorres C, Fair W. Optimal age specific harvesting policy for continuous-time population model, In: T A Burton ed, Modelling and Differential Equations in Biology, New York: Marcel Dekker, 1980.
  • 3Ainseba B, Langlais M. On a population dynamics control problem with age dependence and spatial structure, J Math Anal Appl, 2000, 248: 455-474.
  • 4Barbu V, Iannelli M, Martcheva M. On the controllability of the Lotka-Mckendrick model of population dynamics, J Math Anal Appl, 2001, 253: 142-165.
  • 5Barbu V, Iannelli M. Optimal control of population dynamics, J Optim Theory Appl, 1999, 102: 1-14.
  • 6Anita S. Analysis and Control of Age-Dependent population Dynamics, Dordrecht: Kluwer Academic Publishers, 2000.
  • 7Hritonenko N, Yatsenko Y. Optimization of harvesting age in an integral age-dependent model of population dynamics, Math Biosci, 2005, 195: 154-167.
  • 8Hritonenko N, Yatsenko Y. Optimization of harvesting return from age-structured population, J Bioeconomics, 2006, 8: 167-179.
  • 9Brokate M. Pontryagin's principle for control problems in age-dependent population dynamics, J Math Biol, 1985, 23: 75-101.
  • 10Anita S, Iannelli M, Kim M-Y, et al. Optimal harvesting for periodic age-dependent population dynamics, SIAM J Appl Math, 1998, 58: 1648-1666.

共引文献30

同被引文献37

  • 1胡新利.潜伏期具有传染力的传染病模型分析[J].西安工程大学学报,2012,26(6):801-806. 被引量:5
  • 2庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 3Gao S J, Chen L S, Teng Z D. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Anal:RWA,2008, 9 C 2) :599 - 607.
  • 4Hofbauer J, Sigmund K. Evolutionaly Games and Populatiion Dynamics[ M ]. Cambridge :Cambridge University, 1998.
  • 5Pei Y Z, Liu S Y, Gao S J, et al. A delayed SEIQR epidemic model with pulse vaccination and the quarantine measure [ J ]. Comput Math Appl,2009,58( 1 ) :135 - 145.
  • 6Zliang S W, Wang F Y, Chen L S. A food chain system with density - dependent birth rate and impulsive perturbations [ J l- Ady Complex Systems, 2006,9 (3) : 1 - 14.
  • 7Hethcote H, Ma Z E, Liao S B. Effects of quarantine in six endemic models for infectious diseases[ J ]. Math Biosciences,2002, 180(1/2) :141 - 160.
  • 8Donofrio A. Stability properties of pulse vaccination strategy, in SEIR epidemic model[ J]. Math Biosciences ,2002,179( 1 ) :57 -72.
  • 9Zhou Y C, Liu H W. Stability of periodic solution for an SIS model with pulse vaccination [ J ]. Math Comput Model, 2003, 38(3) :299 -308.
  • 10杨志春.Volterra型脉冲积分微分方程解的存在性和稳定性[J].重庆师范大学学报(自然科学版),2008,25(1):1-4. 被引量:9

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部