期刊文献+

可塑型脱矿骨基质/海藻酸钠复合材料的制备及细胞相容性 被引量:3

Preparation and cell compatibility of demineralized bone matrix/sodium alginate composite
下载PDF
导出
摘要 背景:制备具有良好骨传导、骨诱导活性、细胞相容性,且可任意塑形的骨修复材料,对于不规则骨缺损以及难愈合性骨折的治疗具有重要意义。目的:构建可塑型脱矿骨基质/海藻酸钠复合组织工程骨材料,筛选出最佳复合比例并评价其细胞相容性。方法:选取健康供体皮质骨,经清洗、粉碎、脱钙处理制备脱矿骨基质,以5/5,6/4,7/3,8/2比例与海藻酸钠复合,通过测定离散直径选取合适的比例构建脱矿骨基质/海藻酸钠复合材料。将所制备脱矿骨基质/海藻酸钠材料浸提液与L-929小鼠成纤维细胞复合培养,2,4,7d后经MTT法检测细胞毒性。结果与结论:随着海藻酸钠含量的增加,复合材料黏性变强,水中离散直径逐步减小,当脱矿骨基质/海藻酸钠质量比为7/3时,复合材料可塑性强,不易离散,在37℃水浴中浸泡2h的离散直径为3.7cm,为复合的最佳比例,经MTT法检测,2,4,7d的细胞增殖率分别为91.56%,95.43%,97.47%,细胞毒性级别均为1级。 BACKGROUND: It is important to prepare a bone substitute material with good osteoacusis, osteoinductive activity and cell compatibility that is easily molded, which is of significance to repair irregular bone defects and refractory bone fractures. OBJECTIVE: To prepare demineralized bone matrix/sodium alginate (DBM/ALG) composite material and to screen out the optimal composite ratio, as well as to evaluate its cell compatibility. METHODS: DBM was prepared from the cortical bone of healthy donors by cleaning, grinding and demineralization. According to the ratio of 5/5, 6/4, 7/3, 8/2, the DBM was compounded with ALG, and the DBM/ALG composite material was prepared through screening the optimal ratio by disperse diameter method. L-929 fibroblasts of mice were cultured in the leaching liquor of DBM/ALG, and the cytotoxicity was tested by MTT method at days 2, 4 and 7. RESULTS AND CONCLUSION: With the increase of ALG content, the viscosity of DBM/ALG was strengthened and dispersed diameter was reduced gradually. When the ratio of DBM/ALG was 7/3, DBM/ALG was not discrete easily, and dispersed diameter was 3.7 cm in 37℃ water. The results of MTT showed that cell proliferation rates were 91.56%, 95.43% and 97.47% at days 2, 4 and 7, respectively; while cytotoxicity was in grade 1.
出处 《中国组织工程研究》 CAS CSCD 2012年第29期5433-5436,共4页 Chinese Journal of Tissue Engineering Research
基金 山西省青年科学基金项目(2006021050)~~
  • 相关文献

参考文献1

二级参考文献21

  • 1[1]Sonntag VKH, Marciano FF. Is fusion indicated for lumbar spinal disorders? Spine 1995; 20:138s- 142s
  • 2[2]Boden SD, Schimandle JH, Hutton WC, et al. 1995 Volvo Award in Basic Science: the use of an osteoinductive growth factor for lumbar spinal fusion. Part Ⅰ: biology of spinal fusion.Spine 1995; 20:2626-2632
  • 3[3]Boden SD, Schimandle JH, Hutton WC. 1995 Volvo Award in Basic Science: the use of an osteoinductive growth factor for lumbar spinal fusion. Part Ⅱ: study of dose, carrier, and species.Spine 1995; 20:2633-2644
  • 4[4]Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3:192-195
  • 5[5]Cook SD, Dalton JE, Tan EH, et al. In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine 1994; 19:1655-1663
  • 6[6]Boden SD, Schimandle JH, Hutton WC. An experimental Lumbar intertransverse process spinal fusion model. Spine 1995a;20:412-420
  • 7[7]Sandhu HS, Kanim MA, Toth JM, et al. Experimental spinal fusion with recombinant human bone morphogenetic protein-2without decortication of osseous elements. Spine 1997; 22:1171-1180
  • 8[8]Lowenstam HA, Weiner S. On biomineralization. New York:Oxford University Press; 1989, p35-40.
  • 9[9]Landis WJ, Song M J, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Bio11993; 110:39-54
  • 10[10]Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 2000; 50:518-527.

共引文献37

同被引文献76

  • 1胡蕴玉.骨诱导及BMP的研究现状与展望[J].中华外科杂志,1996,34(10):579-581. 被引量:24
  • 2张育敏,李宝兴,李冀,马绍英,赵亚平,王建茹,原林.聚乳酸-骨基质明胶多孔复合材料制备及骨诱导活性研究[J].中国修复重建外科杂志,2007,21(2):135-139. 被引量:8
  • 3李强,孙正义,严冬雪,刘文忠,姚新德.脱钙骨基质材料的生物学表现:降解性能、孔隙率及其黏附性能特征[J].中国组织工程研究与临床康复,2007,11(31):6121-6124. 被引量:17
  • 4Baroth S,Bourges X,Goyenval e E. Injectable biphasic calcium phosphate bioceramic:The HYDROS concept[J].Biomedical Materials & Engineering,2009,(01):71-76.
  • 5Bodakhe S,Verma S,Garkhal K. Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate)fumarate and hydroxyapatite:development,biocompatibility and bone regeneration in a rat calvarial bone defect model[J].Nanomedicine(Lond),2013.
  • 6Becker W,Burton E,Raul C. A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets[J].Journal of Periodontology,1994,(12):1128-1133.
  • 7Urist MR,Chang JJ,Lietze A. Preparation and bioassay of bone morphogenetic protein and polypeptide fragments[J].Methods in Enzymology,1987.294-312.
  • 8Lee DW,Koo KT,Seol YJ. Bone regeneration effects of human al ogenous bone substitutes:A preliminary study[J].J Periodontal Implant Sci,2010.132-138.
  • 9Aspriel o SD,Ferrante L,Rubini C. Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery[J].Clinical Oral Investigations,2011.25-32.
  • 10Darby I. Periodontal materials[J].Australian Dental Journal,2011.107-118.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部