期刊文献+

The Role of PIN Auxin Efflux Carriers in Polar Auxin Transport and Accumulation and Their Effect on Shaping Maize Development 被引量:11

The Role of PIN Auxin Efflux Carriers in Polar Auxin Transport and Accumulation and Their Effect on Shaping Maize Development
原文传递
导出
摘要 In plants, proper seed development and the continuing post-embryonic organogenesis both require that dif- ferent cell types are correctly differentiated in response to internal and external stimuli. Among internal stimuli, plant hormones and particularly auxin and its polar transport (PAT) have been shown to regulate a multitude of plant phys- iological processes during vegetative and reproductive development. Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana, during the last few years, many studies tried to transfer this knowledge from model to crop species, maize in particular. Applications of auxin transport inhibitors, mutant characterization, and molecular and cell biology approaches, facilitated by the sequencing of the maize genome, allowed the identification of genes involved in auxin metabolism, signaling, and particularly in polar auxin transport. PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize. In this review, we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development. Similarities and differences between maize and Arabidopsis are analyzed and discussed, also considering that their different plant architecture depends on the differentiation of structures whose development is con- trolled by auxins. In plants, proper seed development and the continuing post-embryonic organogenesis both require that dif- ferent cell types are correctly differentiated in response to internal and external stimuli. Among internal stimuli, plant hormones and particularly auxin and its polar transport (PAT) have been shown to regulate a multitude of plant phys- iological processes during vegetative and reproductive development. Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana, during the last few years, many studies tried to transfer this knowledge from model to crop species, maize in particular. Applications of auxin transport inhibitors, mutant characterization, and molecular and cell biology approaches, facilitated by the sequencing of the maize genome, allowed the identification of genes involved in auxin metabolism, signaling, and particularly in polar auxin transport. PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize. In this review, we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development. Similarities and differences between maize and Arabidopsis are analyzed and discussed, also considering that their different plant architecture depends on the differentiation of structures whose development is con- trolled by auxins.
出处 《Molecular Plant》 SCIE CAS CSCD 2012年第4期787-798,共12页 分子植物(英文版)
关键词 AUXIN PIN-formed auxin efflux carrier PAT Polar Auxin Transport kernel development MERISTEM organ-ogenesis Zea mays. auxin PIN-formed auxin efflux carrier PAT Polar Auxin Transport kernel development meristem organ-ogenesis Zea mays.
  • 相关文献

参考文献3

二级参考文献31

  • 1Bao, F., Shen, J., Brady, S.R., Muday, G.K., Asami, T., and Yang, Z. (2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol. 134, 1624-1631.
  • 2Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., and Friml, J. (2003). Local, effluxdependent auxin gradients as a common module for plant organ formation. Cell. 115, 591-602.
  • 3Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 433, 39-44.
  • 4Carraro, N., Forestan, C., Canova, S., Traas, J., and Varotto, S. (2006). ZmPINla and ZmPINlb encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol. 142, 254-264.
  • 5Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, R, Sandberg, G., and Bennett, M.J. (2003). Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165-171.
  • 6Chen, S., Jin, W., Wang, M., Zhang, F., Zhou, J., Jia, Q., Wu, Y., Liu, F., and Wu, R (2003). Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J. 36, 105-113.
  • 7Friml, J., et al. (2002). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell. 108, 661-673.
  • 8Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 426, 147-153.
  • 9Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 282, 2226-2230.
  • 10Kuderova, A., Urbankova, I., Valkova, M., Malbeck, J., Brzobohaty, B., Nemethova, D., and Hejatko, J. (2008). Effects of conditional IPT dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol. 49, 570-582.

共引文献80

同被引文献56

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部