摘要
泛素化是目前广受关注的一种翻译后修饰过程,对蛋白质降解、DNA修复等多种细胞过程都具有重要的调控作用。本文根据国内外蛋白质泛素化位点预测的研究,分析了预测泛素化位点的特征属性,总结了对这些特征进行优化的特征选择方法,并对预测过程中所使用的各种机器学习分类器进行了概述。
Ubiquitination, a popular process of post-translational modification, plays an important regulatory role in numerous cellular process such as protein degradation, DNA repair and so on. The essay analyzed the features influencing the protein ubiquitination sites prediction and feature selection approaches that can extract the informative features improving the performance of classifier from the total feature set. Meanwhile, several machine learning classifiers of predicting the protein ubiquitination sites were introduced based on the various relevant studies of home and abroad.
出处
《现代生物医学进展》
CAS
2012年第18期3573-3576,共4页
Progress in Modern Biomedicine
基金
国家自然科学基金资助项目(61171191)
江苏省自然科学基金资助项目(BK2010500)
关键词
泛素化位点
特征选择
机器学习分类器
Ubiquitination sites
Feature selection
Machine leaming classifiers