期刊文献+

基于分块处理的条件随机场视频分割算法 被引量:3

Video Segmentation Algorithm Based on Partitioning-Processing Conditional Random Field
下载PDF
导出
摘要 为降低传统基于条件随机场(CRF)的视频分割的时间复杂度,提出了一种基于视频分块处理的CRF视频分割算法.该算法利用像素空间相关性对原视频帧进行分块处理形成新视频帧,然后使用CRF对新视频帧进行分割,最后根据初始分割、前一帧分割结果和当前帧CRF分割结果实现最终的分割.实验结果表明,在不明显增加误分割率的前提下,文中算法能有效降低时间复杂度. In order to reduce the time complexity of the traditional video segmentation based on the conditional random field(CRF),a partitioning-processing algorithm is proposed.In this algorithm,the spatial correlation of pixels is used to partition the original frames into some new ones that are then segmented by the CRF,and the final segmentation is realized according to the initial segmentation,the results of the previous frame and the results of the current frame after CRF segmentation.Experimental results show that the proposed algorithm effectively reduces the time complexity without obvious increase in the false rate of video segmentation.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第6期43-47,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目(9151064101000037)
关键词 视频分割 条件随机场 分块处理 运算复杂度 video segmentation conditional random field partitioning processing conaputational complexity
  • 相关文献

参考文献14

  • 1彭培华,曲波,陈荣胜.基于支持向量机的小波域视频字幕检测与提取[J].华南理工大学学报(自然科学版),2004,32(z1):63-66. 被引量:4
  • 2方宇强,戴斌,宋金泽,单恩忠.一种改进的基于活动轮廓和光流的运动目标分割方法[J].中南大学学报(自然科学版),2011,42(4):1035-1042. 被引量:6
  • 3Lu Xiaodong, Zhou Jun, I-Ie Yuanjun. Image segmentation based on an improved GA-MRF with dynamic weights [ C ] //Proceedings of the 2nd International Conference on Advanced Computer Control. Shenyang : IEEE ,2010 :458-461.
  • 4黄贤武,朱莉,仲兴荣,王加俊.一种新的基于时空马尔可夫随机场的运动目标分割技术[J].电子与信息学报,2006,28(2):367-371. 被引量:10
  • 5张泊平,吴松丽,鄢靖丰.基于层次HMM的运动目标分割[J].计算机工程与应用,2010,46(5):162-165. 被引量:2
  • 6Lafferty J D, McCallum A, Pereira F C N. Conditional ran- dom fields: probabilistic models for segmenting and labe- ling sequence data [ C] //Proceeding of the 18th Interna- tional Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc,2001:282-289.
  • 7Sun Xiao, Nan Xiaoli. Chinese base phrases chunking based on latent semi-CRF model [ C ] //Proceedings of International Conference on Natural Language Processing and Knowledge Engineering. Beijing : IEEE,2010 : 1-7.
  • 8Wang Y, Ji Q. A dynamic conditional random field model for object segmentation in image sequences [ C ] //Pro- ceedings of IEEE Computei Society Conference on Com- puter Vision and Pattern Recognition. Washington D C: IEEE,2005 : 264- 270.
  • 9Wang Y, Loe K F, Wu J K. A dynamic conditional random field model for foreground and shadow segmentation [J]. IEEE Transaction on Pattern Analysis and Machine Inte- lligence, 2006,28 ( 2 ) : 279- 289.
  • 10高琳,唐鹏,盛鹏,左航,游志胜.复杂场景下基于条件随机场的视觉目标跟踪[J].光学学报,2010,30(6):1721-1728. 被引量:15

二级参考文献46

  • 1万成凯,袁保宗,苗振江.一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法[J].中国科学(F辑:信息科学),2009,39(4):391-396. 被引量:6
  • 2[2]Li H,Doermann D, Kia O. Automatic text detection and tracking in digital video [J]. IEEE Transactions on Image Processing,2000,9 (1): 147 - 156.
  • 3[3]Wu V, Manmatha R, Riseman E M. TextFinder:An automatic system to detect and recognize text in images [J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1999,21 (11): 1224 - 1229.
  • 4[4]Fan J,Yau D K,Elmagarmid A K, et al. Automatic image segmentation by integrating color-edge extraction and seeded region growing [J]. IEEE Trans on Image Processing,2001,10 (10) :1454 - 1466.
  • 5[5]Birchfield S. Elliptical head tracking using intensity gradients and color histograms [A]. IEEE Conference on Computer Vision and Pattern Recognition [C]. Canada:Santa Barbara, 1998. 232 - 237.
  • 6S. Kumar,M. Hebert. Discriminative random fields:a discriminative framework for contextual interaction in classification[C]. Proc. IEEE Int. Conf. Computer Vision,2003. 1150-1159.
  • 7X. Ren,C. Fowlkes,J. Malik. Cue integration for figure/ground labeling[C]. Proc. Neural. Information Processing Systems (NIPS),2005. 1121-1128.
  • 8S. V. N. Vishwanathan,N. N. Schraudolph,M. W. Schmidt et al.. Accelerated training of conditional. random fields with stochastic gradient methods[C]. Proc. Int. Conf. Machine Learning,2006. 969-976.
  • 9Y. Weiss. Correctness of local probability propagation in graphical models with loops[J]. Neural Computation,2000,12(1):1-41.
  • 10P. Viola,M. Jones. Robust real-time face detection[J]. International J. Computer Vision,2004,57(2):137-154.

共引文献39

同被引文献37

  • 1梁玉红,黄晓林.基于系统级FPGA/CPLD的SoPC嵌入式开发研究[J].广东自动化与信息工程,2005,26(4):33-36. 被引量:2
  • 2洪樱,欧吉坤,彭碧波.GPS卫星精密星历和钟差三种内插方法的比较[J].武汉大学学报(信息科学版),2006,31(6):516-518. 被引量:132
  • 3Brox T, Malik J. Object segmentation by long term analysis of point trajectories. Computer Vision-ECCV 2010. Springer Berlin Heidel- berg, 2010:282-295.
  • 4Grundmann M, Kwatra V, Han M, et al. Efficient hierarchical graph-based video segmentation. 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010:2141-2148.
  • 5Lee Y J, Kim J, Grauman K. Key-segments for video object segmen- tation. 2011 IEEE International Conference on Computer Vision (IC- CV), 2011 : 1995-2002.
  • 6Carreira J, Sminchisescu C. Constrained parametric min-cuts for au- tomatic object segmentation. 2010 IEEE Conference on Computer Vi- sion and Pattern Recognition (CVPR), Computer Vision (ICCV). IEEE, 2010 : 3241-3248.
  • 7Endres I, Hoiem D. Category independent object proposals. Comput- er Vision-ECCV 2010. Springer Berlin Heidelberg, 2010:575-588.
  • 8Vicente S, Rother C, Kolmogorov V. Object cosegmentation. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2011 : 2217-2224.
  • 9Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG). ACM, 2004; 23(3) : 309-314.
  • 10Chockalingam P, Pradeep N, Birchfield S. Adaptive fragments- based tracking of non-rigid objects using level sets. 2009 IEEE 12th International Conference on Computer Vision, 2009:1530-1537.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部