期刊文献+

两株高糖分利用能力的酿酒酵母呼吸突变体选育 被引量:4

Breeding of Two Respiration-impaired Mutants of Saccharomyces cerevisiae with Enhanced Sugar Metabolism Capacity
下载PDF
导出
摘要 以酿酒酵母乙醇发酵高产工业菌株MF1002为始发菌株,对其营养细胞进紫外线诱变,筛选得到两株性状稳定的呼吸缺陷型突变体MF15c和MF11a。菌体细胞对2,3,5-氯化三苯四氮唑(TTC)显色测定呼吸强度的结果表明,两突变菌株的相对呼吸强度分别只有始发菌株的57.77%和47.25%。与现有报道的呼吸缺陷突变体不同,两株突变体的细胞生长速率只在培养初期略低于始发菌株,总体生长速率与始发菌株几乎没有差异,在YPD平板上培养也不形成小菌落。比较蔗糖发酵试验表明,两株突变体的乙醇产量较始发菌株只分别略提高6.48%-6.59%(MF15c)和1.66%-1.97%(MF11a),但发酵终止的残总糖含量却显著低于始发菌株,分别减少34.85%和19.70%,发酵效率较始发菌株分别显著提高6.69%和4.71%,表明这两株突变体为新型的呼吸缺陷型突变。鉴于提高乙醇发酵的发酵效率可显著降低生产成本,认为这两株突变菌株具有较高的潜在工业利用价值。 Two phenotype stable respiration-impaired mutants, named as MF15c and MF1 la, were selected by UV-ray inducing a high- ethanol-producing industrial strain MFIO02 of Saccharomyces cerevisiae. The relative respiration rate of mutants, determined through analysis of colorimetric reaction of 2, 3, 5-triphenyl tetrazolium chloride ( TTC ) in the ceils, was only 57.77% and 47.25% of MFIO02, respectively. Unlike the most previously reported mutation, both mutants were with the novel phenotypes that the growth rate was not significanly different from the parent strain, and no "petite colonie" were observed on YPD plate cultivation. However, the fermentation with sucrose as substrate showed that, comparing with MFIO02, the ethanol yield of mutants were only slightly enhanced 6.48%-6.59% ( MF15c ) and 1.66%-1.97% ( MFI la ) , but the content of total residual sugar of mutants were significantly decreased 34.85% ( MF15c ) and 19.70% ( MF1 la ) , the fermentation efficiency of mutants were also significantly enhanced 6.69% and 4.71%, respectively, indicating MF15c and MF1 l a were novel respiration- impaired mutants. Since enhancing the fermentation efficiency involves a significant benefit for ethanol fermentation, we argue that both mutants have a greal p^tential utilization value for ethanol production.
出处 《生物技术通报》 CAS CSCD 北大核心 2012年第7期158-162,共5页 Biotechnology Bulletin
基金 国家重点基础研究发展计划(973)课题(2010CB736209) 国家科技部科技人员服务企业行动项目(2009GJE10002) 广西科学研究与技术开发计划项目(桂科合10100019-21,1140010-15) 广西自然科学基金项目(2011GXNSFA018113) 广西科学院基本科研业务费资助项目(10YJ25SW15)
关键词 酿酒酵母 紫外线诱变 呼吸突变体 糖分利用 乙醇生产 工业菌株 Saccharomyces cerevisiae UV-induction Respiration-impaired mutants Sugar metabolism Ethanol production Industrial strain
  • 相关文献

参考文献15

  • 1侯保朝,杜风光,郭永豪,贾新成,刘代武.高浓度酒精发酵[J].酿酒科技,2005(4):93-96. 被引量:43
  • 2Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energ Combust, 2008, 34 : 551-573.
  • 3张穗生,黄日波,周兴,黎贞崇,黄志民.酿酒酵母乙醇耐受性机理研究进展[J].微生物学通报,2009,36(10):1604-1608. 被引量:18
  • 4金建玲,刘巍峰,高东.酿酒酵母呼吸缺陷型和野生型酒精发酵特性的比较分析[J].微生物学通报,2003,30(5):9-14. 被引量:9
  • 5朱英莲,郭莉萍,许家兴,张新富.紫外线诱变法进行呼吸缺陷型酵母的选育研究[J].四川食品与发酵,2007,43(6):36-40. 被引量:3
  • 6Hurter A, Oliver SG. Ethanol production using nuclear petite yeast mutants. AppI Microbiol Biotechnol, 1998, 49 : 511-516.
  • 7Toksoy OE, Oliver SG, Kirdar B. Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae. Appl Environ Microbiol, 2005, 71 ( 10 ) : 6443-6445.
  • 8Tzagoloffl A, Dieckmann CL. PET Genes of Saceharomyces cerevisiae. Microbiol Rev, 1990, 54 ( 9 ) : 211-225.
  • 9Choi HS, Carman GM. Respiratory deficiency mediates the regulation of CHOl-eneoded phosphatidylserine synthase by mRNA stability in Saccharomyces cerevisiae. J Bio Chem, 2007, 282 (43) : 31217- 31227.
  • 10Goffrini P, Ferrero I, Donnini C. Respiration-dependent utilization sugars in yeasts : a determinant role for sugar trasporters. J Bac- teriol, 2002, 184 ( 2 ) : 427-432.

二级参考文献70

共引文献86

同被引文献57

  • 1肖冬光,刘青,李静,姜天笑.酿酒酵母单倍体制备方法的优化[J].酿酒科技,2004(4):21-22. 被引量:28
  • 2宋浩雷,郭晓贤,杨月梅,江贤章,黄建忠.酿酒酵母ADH3基因的敲除[J].工业微生物,2006,36(4):28-32. 被引量:9
  • 3王利英,刘一,杨登峰,黄日波.绿色木霉葡聚糖内切酶cDNA基因的克隆及其在酿酒酵母中的表达[J].广西科学,2007,14(3):315-319. 被引量:10
  • 4Beales N., 2004, Adaptation of microorganisms to cold tempera- tures, weak acid preservatives, low pH, and osmotic stress: A review, Comprehensive Reviews in Food Science and Food Safety, 3(1): 1-20.
  • 5Betite V.C., Jt-nior M.M., Oliveira J.E., and Emandes J.R., 2012, Very high gravity sucrose fermentation by Brazilian industrial yeast strains: Effect of nitrogen supplementation, Journal of the Institute of Brewing, 118(2): 174-178.
  • 6Casey G.P., Magnus C.A., and Ingledew W.M., 1983, High gravity brewing:. Nutrient enhanced production of high concentration of ethanol by brewing yeast, Biotechnology Letters, 5 (6): 429-434.
  • 7Coote P.J., Jones M.V., Seymour I.J., Rowe D.L., Ferdinando D.P., McArthur A.J., and Cole M.B., 1994, Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae, Microbiology, 140(8): 1881-1890.
  • 8Costa V., Reis E., Quintanilha A., and Moradas-Ferreira P., 1993, Acquisition of ethanol tolerance in Saccharomyces cerevisiae: The key role of the mitochondrial superoxide dismutase, Archives of Biochemistry and Biophysics, 300(2): 608-614.
  • 9Costa V., Amorim M.A., Reis E., Quintanilha A., and Moradas-Ferreira P., 1997, Mitochondrial superoxide dis- rnutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase, Microbiology, 143 (5): 1649-1656.
  • 10Davidson J.F., Whyte B., Bissinger P.H., and Schiestl R.H., 1996, Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 93 (10): 5116-5121.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部