期刊文献+

基于MMPHDF的多机动目标联合检测、跟踪与分类算法 被引量:6

Joint detection, tracking and classification algorithm of multiple maneuvering targets using MMPHDF
原文传递
导出
摘要 针对场景中存在新目标出现、旧目标消失(即目标数目变化)和密集杂波的复杂情形,利用多模型概率假设密度滤波器(MMPHDF)在多机动目标联合检测与跟踪上的优势,加入类别辅助信息,提出了一种多机动目标联合检测、跟踪与分类算法.该算法的基本思想是在MMPHDF中用属性向量扩展单目标状态向量,用位置和属性的组合测量似然函数代替单目标位置及杂波位置测量似然函数,提高了不同类目标与杂波测量间的鉴别能力,从而改善了目标数目及状态的估计精度;在更新目标状态后,对目标属性信息进行更新,更为精确的目标数目及状态估计又保证了目标分类性能.本文给出了该算法的粒子实现方法.仿真结果验证了上述结论. To account for joint detection, tracking and classification (JDTC) of multiple maneuvering targets in dense clutter environment, this paper introduces an algorithm based on the multiple-model probability hypothesis density filter (MMPHDF). The MMPHDF can be applied to jointly detect and track multiple maneuvering targets, but its filter performance deteriorates rapidly in dense clutter environment. The proposed JDTC algorithm (MMPHDF-JDTC) utilizes target classification information and target kinematic information to simultaneously estimate the time-varying number of targets, their kinematic states and types. The main idea is to augment the kinematic state vector with the target class vector, and then use their combined measurement likelihood to integrate the target classification information into the update process of MMPHDF. The combined target kinematic state and class measurement likelihood improves the discrimination of different class targets and clutter, so better detection and tracking performance can be expected compared with the original MMPHDF. Alternately, accurate detection and tracking results is the foundation for correct target classification. A particle implementation of the MMPHDF-JDTC has been given. Simulation results validate the above conclusions.
出处 《中国科学:信息科学》 CSCD 2012年第7期893-906,共14页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61101181) 国家杰出青年基金(批准号:61025006)资助项目
关键词 有限集统计学理论 多机动目标联合检测与跟踪 联合目标跟踪与分类 多机动目标联合检测 跟踪与分类 类别辅助目标跟踪 目标跟踪 分类 非线性滤波 finite set statistics; joint detection and tracking of multiple maneuvering targets; joint target tracking and classification; joint detection; tracking and classification of multiple maneuvering targets; classification-aided target tracking; target tracking; cl assification; nonlinear filtering
  • 相关文献

参考文献13

  • 1庄泽森,张建秋,尹建君.Rao-Blackwellized粒子概率假设密度滤波算法[J].航空学报,2009,30(4):698-705. 被引量:17
  • 2尹建君.Gaussian Sum PHD Filtering Algorithm for Nonlinear Non-Gaussian Models[J].Chinese Journal of Aeronautics,2008,21(4):341-351. 被引量:14
  • 3单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 4Reid DB.An algorithm for tracking multiple targets[].IEEE Transactions on Automatic Control.1979
  • 5Lian Feng,Han Chong-zhao,Liu Wei-feng,et al.SequentialMonte Carlo implementation and state extraction of thegroup probability hypothesis density filter for partlyunresolvable group targets-tracking problem[].IET RadarSonar and Navigation.2010
  • 6Shafer,Glenn.A Mathematical Theory of Evidence[]..1976
  • 7Blackman S,Popoli R.Design and Analysis of Modern Tracking Systems[]..1999
  • 8Xu Lei,Krzyzak Adam,Suen Ching Y.Methods of combining multiple classifiers and their applications to handwriting recognition[].IEEE Transactions on Systems Man and Cybernetics.1992
  • 9Kittler J,Hatef M,Duin R P,et al.On combining classifiers[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1998
  • 10Zhang H J,Jing Z L,Hu S Q.Gaussian mixture CPHD filter with gating technique[].Signal Processing.2009

二级参考文献56

  • 1Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Transaction on Signal Processing, 2005, 53(7): 2279 -2289.
  • 2Schon T, Karlsson R, Gustafsson F. The marginalized particle filter in practice[R]. Linkoping: Linkoping University, LiTH-ISY-R 2715, 2005.
  • 3Anderson B D O, Moore J B. Optimal filtering[M]. Engle wood Ciffs, NJ: Prentice-Hall, 1979.
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non Gaussian Bayesian state estimation [J]. IEE Proceedings F, 1993, 140(2): 107-113.
  • 5Arulampalam M S, Maskelli S, Gordon N, et al. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 6Karlsson R, SchOn T. Complexity analysis of the marginalized particle filter[R]. Linkoping: Linkoping University, LiTHISY-R-2611 , 2004.
  • 7Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3), 613-624.
  • 8Doucet A. On sequential simulation-based methods for Bayes ian filtering[R]. CUED/F INFENG/TR. 310 (1998), 1998.
  • 9Panta K, Vo B, Singh S. Improved probability hypothesis density (PHD) filter for multitarget traeking[C] // Proceedings of the 2005 Third International Conference on Intelligent Sensing and Information Processing. 2005:213- 218.
  • 10Hoffman J R, Mahler R P S. Multitarget miss distance via optimal assignment[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2004, 34(3): 327- 336.

共引文献35

同被引文献36

  • 1周代英.雷达目标一维距离像识别中的最优子空间法[J].电波科学学报,2004,19(6):748-751. 被引量:4
  • 2单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 3L D erro, B Y ar-Shalom. Automated tracking with target ampli- tude information [ C ]. In American Control Conference, 1990: 2875-2880.
  • 4Y Wang, et al. Joint Detection, Tracking, and Classification of Multiple Targets in Clutter using the PHD Filter[J ]. IEEE Trans Aerosp Electron Syst, 2012,48:3594-3609.
  • 5B N Vo, S Singh, D A oueet. Sequential Mote Carlo methods for multi-target filtering with random finite sets [ J ]. IEEE Trans Aerosp Electron Syst, 2005,41:1224-1245.
  • 6R Mahler. Approximate multisensor CPHD and PHD filters [ C ]. In: Proceedings of the 13th International Conference on Information Fusion, Edinburgh, 2010.
  • 7T Vercauteren, D Guo, X Wang. Joint multiple target tracking and classification in collaborative sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2005,23 (4) :714-723.
  • 8D Schuhmacher, B T Vo, B N Vo. A consistent metric for perform- ance evaluation of multi - object filters [J].IEEE Trans Signal Process, 2008,56: 3447-3457.
  • 9MAHLER R.多源多目标统计信息融合[M].范红旗,译.北京:国防工业出版社,2013.
  • 10Challa S, Pulford G W. Joint target tracking and classification u- sing radar and ESM sensors[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37 (3) : 1039 - 1055.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部