期刊文献+

用径向基神经网络预测氯丙嗪的稳态血药浓度 被引量:1

Predicting steady-state plasma concentration of chlorpromazine using radial basis function neural networks
原文传递
导出
摘要 目的评价用径向基(RBF)神经网络所建立的预测氯丙嗪稳态血药浓度模型的预测性能。方法将数据分为训练集、校验集和测试集,来建立获取输出变量(37项参数)与输出变量(氯丙嗪稳态血药浓度)两者间关系的RBF网络模型,并评价其预测性能。结果当扩展速度(SP)值为2.8时,所建立的RBF网络模型,预测奋乃静稳态血药浓度的效果和泛化能力较好。结论 RBF网络用于预测氯丙嗪稳态血药浓度是可行的和有效的。 Objective To evaluate the performance of a model for predicting the steady-state plasma concentration of chlorpromazine established by using radial basis function(RBF) neural network.Methods The data was divided into training set,validation set and test set to establish the RBF neural network model which had captured the relationships between the input variables(37 parametes) and the output variable(steady-state plasma concentration of chlorpromazine) and evaluate predictive performance of the model.Results When the SPREAD(SP) value was 2.8,the RBF neural network model had the better effect on predicting the steady-state plasma concentration of chlorpromazine and better generalization.Conclusion It is practical and valid for RBF neural network model to be applied to the study of steady-state plasma concentration prediction of chlorpromazine.
出处 《中国临床药理学杂志》 CAS CSCD 北大核心 2012年第7期536-538,共3页 The Chinese Journal of Clinical Pharmacology
基金 国家自然科学基金资助项目(10926191) 中山市科技计划基金资助项目(20102A024)
关键词 径向基神经网络 氯丙嗪 稳态血药浓度 radial basis function neural networks; chlorpromazine; steady-state plasma concentration
  • 相关文献

参考文献7

二级参考文献26

共引文献36

同被引文献11

  • 1刘朝晖,黄榕波,陈庆强,温预关,李明亚.径向基神经网络预测氯氮平血药浓度[J].中国药房,2011,22(14):1273-1275. 被引量:2
  • 2海金(Haykin,S.),著.叶世伟,译.神经网络原理[M].北京:机械工业出版社,2004.
  • 3D()tlNAL V, KUCA K, JUN D. What are artificial neural networks and what they can do? [J] . Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2005, 149(2):221.
  • 4BRIER ME, ZURADA JM, ARONOFF GR. Neural net- work predicted peak and trough gentamicin eoncentration[J]. Pharma. Res,1995, 12 (3) :406-412.
  • 5CORRIGAN BW, MAYO PR, JAMALI F. Application of a neural network for gentamicin concentration prediction in a general hospital population[J]. Ther. Drug Monit, 1997: 19 (1) : 25-28.
  • 6CHOW H, TOLLE KM, ROE DJ, et al. Application of neu- ral networks to population pharmaeoki- neti: data analysis [J].J Pharm Sci , 1997,86 (7) ; 840-845.
  • 7CHEN, HY, CHEN TC, MIN DI, et al. Prediction of ta-crolimus blood levels by using the neural network with genet- ic algorithm in liver transplantation patients [J]. Ther. Drug Monit, 1999,21(1) ;50-56.
  • 8YAMAMURA S. Clinical application of artificial neural net work (ANN) modeling to predict pharmacokinetic parameters of severely ill patients[J]. Adv Drug Deliv Rev, 2003,55: 1233 125!,.
  • 9余俊先,夏杰,史丽敏,李珊,程晟,温爱萍,卫红涛,王汝龙.人工神经网络建立的环孢素A血药浓度预测模型[J].中国药物应用与监测,2010,7(1):52-55. 被引量:7
  • 10刘朝晖,陈庆强,黄榕波,温预关,李明亚.用径向基神经网络预测奋乃静的稳态血药浓度[J].中国临床药理学杂志,2010,26(11):853-855. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部