期刊文献+

线性可分结构系对二进神经元的覆盖问题

Cover Problem of Linear Separable Structures to Binary Neurons
下载PDF
导出
摘要 二进神经网络中每个二进神经元等价于一个线性可分函数,但每个二进神经元所表达的线性可分函数的逻辑意义仍不完全清楚。对此,首先分析了已有的几种线性可分结构系;其次,讨论了其是否覆盖了所有的二进神经元;最后,指出阈值在某些范围内二进神经元所对应的线性可分函数的逻辑意义仍不清楚,这为进一步完善二进神经元的覆盖问题指明了方向。 In binary neural networks, every neuron is equivalent to a linear separable function, however, the logical meaning of every linear separable function which is expressed by the binary neuron is still not clear. This paper firstly analysed the known linear separable structures, then discussed whether these known structures cover the whole binary neurons, finally pointed out when the threshold value is in some range, the logical meaning of the linear separable func- tion is still unclear. This result provides the way of the cover problem of binary neurons.
出处 《计算机科学》 CSCD 北大核心 2012年第7期195-199,共5页 Computer Science
基金 国家自然科学基金(60873195 61070220) 高等学校博士点基金(20090111110002)资助
关键词 二进神经网络 线性可分结构系 覆盖问题 逻辑意义 Binary neural networks, Linear separable structures, Cover problem, Logical meaning
  • 相关文献

参考文献20

  • 1Gray D L,Michel A N. A training algorithm for binary feed for- ward neural networks[J]. IEEE Trans. Neural Networks, 1992, 3(2) : 176-194.
  • 2Kim J H, Park S K. The geometrical learning of binary neural networks[J]. IEEE Trans. Neural Networks, 1995,6 ( 1 ) : 237- 247.
  • 3Muselli M. On sequential construction of binary neural networks [J]. IEEE Trans Neural Networks, 1995,6(3) : 678-690.
  • 4Yamamoto A, Saito T. A flexible learning algorithm for binary neural networks[J]. IEICE Trans. Fundamentals, 1998, ES1-A (9) . 1925-1930.
  • 5Chen Fang-yue, Chen Guan-rong, He Guo-long. Universal Per- ceptron and DNA-Like Learning Algorithm for Binary Neural Networks: LSBF and PBF Implementations[J]. IEEE Transac-tions on Neural network,2009,20(10) : 1645-1658.
  • 6Chen Fang-yue, Chen Guan-rong, He Qin-bin. Universal Percep- tron and DNA-Like Learning Algorithm for Binary Neural Net- works Non-LSBF Implementation[J]. IEEE Transactions on Neural network,2009,20(8) : 1293-1301.
  • 7Lu Yang, Yang Juan, Wang Qiang, et al. The upper bound of the minimal number of hidden nodes in parity problem by neural networks[J]. Science China Information Sciences, Oct. 2011.
  • 8Chua L O. Visions of nonlinear science in the 21st century in CNN A Paradigm for Complexity[M]. Singapore: World Scien- tific, 1999.
  • 9Chen Fang-yue, He Guo-long, Chen Guan-rong. Realization of Boolean Functions via CNN: Mathematical Theory, LSBF and Template Design[J]. Circuits and Systems I Regular Papers, IEEE Transactions on, 2006,53(10) : 2203-2213.
  • 10Wegener I. The complexity of Boolean function[M]. New York: Wiley, 1987.

二级参考文献28

  • 1陆阳,韩江洪,张维勇.二进神经网络中笛卡尔球的研究[J].模式识别与人工智能,2004,17(3):368-373. 被引量:3
  • 2程辉.逻辑神经元网络[J].模式识别与人工智能,1993,6(4):300-306. 被引量:5
  • 3Limin Fu. Rule generation from neural networks. IEEE Trans on Systems, Man, and Cybernatics, 1994, 24(8): 1114~1124
  • 4T B Ludermir. Extracting rules from feedforward Boolean neural networks. In: Proc of 5th Brazilian Symposium on Neural Networks. IEEE Press, 1998. 61~66
  • 5M Muselli, D Liberati. Rule extraction from binary neural networks. In: The 9th Int'l Conf on Artificial Neural Networks, vol 2. Brazil: IEE Press, 1999. 515~520
  • 6G G Towell, J W Sharlik. Extracting refined rules from knowledge-based neural networks. Machine Learning, 1993, 13(1): 71~101
  • 7Yu Xiang, M Ishikawa, Chi Huisheng. Logical rules extraction from data using neural networks. In: Proc of 1997 Chinese Congress on Neurocomputing Science. Nanjing, China, 1997. 293~296
  • 8Fu L M,IEEE Trans on System Man and Cybernetics,1994年,28卷,8期,1114页
  • 9Chu C H, Kim J H, Kim I. Applications of Binary Neural Networks Learning to Pattern Classification. In: Proc of the IEEE World Congress on Computational Intelligence and 1994 IEEE International Conference on Neural Networks. Orlando, USA, 1994, Ⅱ: 907-911
  • 10Muselli M, Liberati D. Rule Extraction from Binary Neural Networks In: Proc of the 9th International Conference on Artificial Neural Networks. Edinburgh, UK, 1999, Ⅱ: 515-520

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部