期刊文献+

融合人工鱼群机理的PPI网络聚类模型与算法 被引量:2

PPI Networks Clustering Model and Algorithm Combining with the Principle of Artificial Fish School
下载PDF
导出
摘要 预测蛋白质交互作用(Protein-Protein Interaction,PPI)网络中未知蛋白质的功能,是生物信息学的一个研究热点。目前基于功能流的方法能有效地解决PPI网络的聚类问题,但是其正确率偏低、时间复杂度较高。为此提出了一种融合人工鱼群机理的PPI网络聚类模型与算法:将人工鱼看作一组聚类中心,觅食行为是指从每个聚类中心开始向它的邻接结点搜索并添加结点到该聚类模块中;接下来将目标函数值最大的人工鱼对应的一组聚类模块看作初始的聚类结果,对应鱼群的追尾行为;剩下的人工鱼开始执行聚群行为,判断对应的聚类模块与初始的聚类结果之间的相似度。如果相似度低于给定的阈值,则将聚类模块添加到初始的聚类结果中。PPI数据集上的仿真实验表明,该算法可以自动确定聚类数目,而且聚类结果的正确率和算法的运行效率都优于功能流算法。 Predicting function of unknown proteins in the protein-protein interaction networks is a hot topic in the bioin- formatics. Recently functional flow method has effectively solved the problem of clustering PPI networks. However, the accuracy is relatively low and the time complexity is high. So the PPI networks clustering algorithm combining with the principle of artificial fish school was proposed, which considered an artificial fish as a set of cluster centers. The fora- ging behavior was regarded as searching the neighbor nodes of initial cluster centers and adding the nodes into cluster module. Afterwards the set of cluster modules having the highest fitness value was selected as the initial cluster result, which was corresponding to the following behavior of artificial fish school. Then other artificial fish began to execute swarming behavior and judged the similarities between the corresponding cluster modules and initial cluster result. If the similarity was lower than given threshold, the cluster module was added into the initial cluster result. The simulation ex- periment on PPI datasets shows that this algorithm can automatically determine cluster number. In addition, both the accuracy of cluster result and efficiency of algorithm are superior to functional flow algorithm.
作者 吴爽 雷秀娟
出处 《计算机科学》 CSCD 北大核心 2012年第7期205-209,共5页 Computer Science
基金 2011年国家自然科学基金(61100164) 陕西省2010年自然科学基础研究计划项目(2010JQ8034) 2009年中央高校基本科研业务费专项资金项目(GK200902016) 陕西师范大学研究生创新基金(2011CXS030)资助
关键词 人工鱼群算法 蛋白质交互作用网络 加权聚集系数 Artificial fish school algorithm,Protein-protein interaction networks,Weighted clustering coefficient
  • 相关文献

参考文献14

  • 1刘吴.基于聚类算法和相互作用网络的蛋白质功能预测研究[D].长沙:湖南大学,2009.
  • 2Guldener U, Munsterkotter M, Oesterheld M, et al. The MIPS protein interaction resource on yeast [J]. Nucleic Acids Re- search, 2006,34: D435-D441.
  • 3Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature, 1998,393 : 440-442.
  • 4Barabdsi A L, Oltvai Z N. Network biology: understanding the cell s functional organization[J]. Nature Reviews: Genetics, 2004,5:101-113.
  • 5张树波,赖剑煌.蛋白质亚细胞定位预测的机器学习方法[J].计算机科学,2009,36(4):29-33. 被引量:7
  • 6Nabieva E,.]im K, Agarwal A, et al. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps[J]3. Bioinformatics, 2005,21 ( 1 ) . i302-i310.
  • 7Cho Y-R , Hwang W, Ramanathan M, et al. Semantic integration to identify overlapping functional modules in protein interaction networks[J]3. BMC Bioinformatics, 2007,8(265).
  • 8Zhang Ai-dong. Protein Interaction Networks[M3. New York, USA. Cambridge University Press, 2009.
  • 9李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:884
  • 10李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:163

二级参考文献63

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:163
  • 2吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 3吴文丽,刘玉树,赵基海.一种新的混合聚类算法[J].系统仿真学报,2007,19(1):16-18. 被引量:18
  • 4戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 5Wu B,Shi Z.A clustering algorithm based on swarm intelligence[C]// Proceedings IEEE International Conferences on Info-Tech & Info-Net, Beijing, 2001.
  • 6Nielsen H, et al. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int. J. Neural Syst. , 1997,8 : 581-599
  • 7Claros M G. MitoProt:a Macintosh application for studying mitochondrial proteins. Comput. Appl. Biosci. , 1995,11:441-447
  • 8Li Y F, Liu J. Predicting subcellular Localization of Proteins Using Support Vector Machine with N-Terminal Amino Acid Composition. ADMD, 2005 : 618-625
  • 9Matsuda S, Vert J P, Saigo H, et al. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. , 2005,14 : 2804-2813
  • 10Nakashima H, Nishikawa K. Discrimination of intracellular and extracellular proteins using amino acid composition and residuepair frequencies. J Mol Biol, 1994,238 (1) :54-61

共引文献967

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部