期刊文献+

用加权平均方法构造新的隐式线性多步法公式 被引量:4

CONSTRUCTION OF THE NEW IMPLICT LINEAR MULTISTEP METHODS FORMULAS BASED ON WEIGHTED AVERAGE METHODS
原文传递
导出
摘要 在已知的线性多步法公式中,用两个较适合的线性多步法进行加权平均就能构造出一系列新的隐式线性多步法公式,而且其中有些公式可能具有较好的性质,如稳定域增大.从而使得解刚性方程时,可以根据对稳定域与截断误差不同的需求来选择公式,以达到在适合的稳定域下,截断误差最小.经过数值试验验证,本文举出的实例中用加权平均方法构造出的有些新公式的稳定域大于原来两个公式任一个的稳定域,可应用于求解常微分方程初值问题的刚性问题. With two known linear multistep methods formulas, a series of the new implicit linear multistep methods can be constructed by weighted average method. Some of them may have better formulae nature, such as large stable regions. Therefore, some linear multistep formulae can be selected for different demands of stable region and error of truncation to get the minimum error of truncation in suitable stable region. In this paper, some of new formulae we constructed, have more large stable regions than any of the original formulae, are valid for the initial-value problem of the stiff problem in ordinary differential equations.
出处 《计算数学》 CSCD 北大核心 2012年第3期309-316,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金(10671132)资助项目
关键词 线性多步法 稳定性 稳定域 刚性方程 截断误差 linear multistep methods stability stable region stiff equation error of truncation
  • 相关文献

参考文献11

  • 1Liniger W. A criterion for a-stability of linear multistep integration formulae[J]. Computing, 1968, 3(4): 280-285.
  • 2Gunnar Bjurel. Modified linear multistep methods for a class of stiff ordinary differential equation- s[J]. BIT Numerical Mathematics, 1972, 12(2): 142-160.
  • 3Genin Y. An algebraic approach to A-stable linear multistep-multiderivative integration formulas[J]. BIT Numerical Mathematics, 1974, 14(4): 382-406.
  • 4Oliver P. A family of linear multistep methods for the solution of stiff and nonstiff ODEs[J]. IMA Journal of Numerical Analysis, 1982, 2(3): 289-301.
  • 5Frank J, Hundsdorfer W, Verwer J G. On the stability of implicit-explicit linear multistep meth- ods[J]. Applied Numerical Mathematics, 1997, 25(2): 193-205.
  • 6Mitsuda Ken-ichiro, Suzuki Chisato. A-stable and Stiffly-stable formulas in generalized linear multi- step methods for ordinary differential equations[J]. Transactions of Information Processing Society of Japan, 2004, 45(1): 311-319.
  • 7Okuonghae R I, Ikhile M N O. A(a)-Stable linear multistep methods for Stiff IVPs in ODEs[J]. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 2011, 50(1): 73- 90.
  • 8杨大地,刘冬兵.一类A(α)稳定的k阶线性k步法公式[J].计算数学,2008,30(2):143-146. 被引量:7
  • 9杨大地,刘冬兵.收敛的全部线性多步法基本公式的推导[J].数值计算与计算机应用,2008,29(3):176-185. 被引量:6
  • 10Lambert J D. Computational methods in ordinary differential equations[M]. New York:John Wiley and Sons, 1973.

二级参考文献9

  • 1Gear C W. Numerical Initial Value Problems in Ordinary Differential Equations[M]. Prentice Hall, Inc, 1971.
  • 2Cash J R. On the integration of stiff systems of O.D.E.Using extended backward differentiation formulate[J]. Numer. Math., 1980, 34(3): 235-246.
  • 3徐洪义 包雪松 王长富.关于求解stiff常微分方程的数值方法.计算数学,1985,11(4):415-419.
  • 4Hanrici P. Discrete variable methods in ordinary differential equations[M]. John wiley and Sons, 1966.
  • 5Henrici P. Discrete variable methods in ordinary differential equations[M]. John wiley and Sons, 1966.
  • 6Ariesh Iserles. A First Course in the Numerical Analysis of Differential Equations[M]. Cambridge University Press, 1996.
  • 7Gear C W. Numerical Initial Value Problems in Ordinary Differential Equations[M]. Prentice Hall, Inc, 1971.
  • 8李庆扬.常微分方程数值解法(刚性问题与边值问题)[M].北京:高等教育出版社,1992.
  • 9李庆扬,谢敬东.解刚性常微分方程的一种线性多步法[J].清华大学学报(自然科学版),1991,31(6):1-11. 被引量:4

共引文献7

同被引文献40

  • 1李庆扬.常微分方程数值解法(刚性问题与边值问题)[M].北京:高等教育出版社,1992.
  • 2Alfeld P. A Special Class of Explicit Linear Multistep Methods as Basic Methods for the Correction in the Dominant Space Technique[J]. Mathematics of Computation, 1979, 33(148): 1195-1212.
  • 3Lenferink H W J. Contractivity preserving explicit linear multistep methods[J]. Numerische Math- ematik, 1989, 55(2): 213-223.
  • 4Frank J, Hundsdorfer W and Verwer J G. On the stability of implicit-explicit linear multistep methods[J]. Applied Numerical Mathematics, 1997, 25(2-3): 193-205.
  • 5in't Hout K J. On the contractivity of implicit-explicit linear multistep methods[J]. Applied Nu- merical Mathematics, 2002, 42(1-3): 201-212.
  • 6李旺尧.一类带有差分扰动项的显式线性多步法的讨论[J].计算数学,1980,2(3):203-208.
  • 7李旺尧.具有大稳定域的显式格式的几种构成方法及相互关系[J].数值计算与计算机应用,1982,3(2):125-128.
  • 8李旺尧.一族具有大稳定域的显式方法的讨论[J].计算数学,1983,5(4):337-343.
  • 9包雪松,徐洪义,屠俊如具有大稳定域的线性多步方法[J].计算数学,1986,8(3):299-304.
  • 10Gear C W. Numerical initial value problems in ordinary differential equations[M]. Prentice-Hall, Inc, 1971.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部