期刊文献+

认知无线Mesh网络中基于概率的贪婪频谱决策技术研究 被引量:3

Research of Probability-based Greedy Spectrum Decision in Cognitive Wireless Mesh Networks
下载PDF
导出
摘要 认知无线电网络传统的频谱决策方法中次用户根据不同的判据选择信道,会引起信道竞争和拥塞。针对认知无线Mesh网络中基于概率的频谱决策方法,提出一种贪婪信道选择算法,当发生频谱切换时,其结合改进的抢占优先(PRP)M/G/1排队理论为次用户选择最佳的目标信道。数值分析结果表明,该算法能够提高并均衡信道利用率,并且在次用户平均到达率较小的情况下,能进一步减少次用户的平均总传输时间,提高网络性能。 For the traditional spectrum decision methods in cognitive radio networks,the secondary users select their communication channel based on various criteria,which may result in channel contend and congest.Considering probability-based spectrum decision in cognitive wireless mesh networks,a greedy channel selection algorithm was proposed.When spectrum handoff occurres,the proposes algorithm combined with the improved preemptive resume priority(PRP) M/G/1queuing theory to select optimal target channels for secondary users.Numerical analysis results show that the algorithm can increase and balance the channel utilization.With lower average arrival rate of secondary users,the average overall transmission time of the secondary users has been further reduced and the network performance is enhanced.
出处 《计算机科学》 CSCD 北大核心 2012年第B06期163-165,共3页 Computer Science
基金 国家自然科学基金项目(61071086) 江苏省高校自然科学基金项目(11KJB510021) 南通市科技计划项目(HS2011015) 南通大学研究生科技创新计划项目(YKC11058)资助
关键词 认知无线Mesh网络 频谱决策 贪婪算法 Cognitive wireless Mesh networks; Spectrum decision; Greedy algorithm
  • 相关文献

参考文献12

  • 1Chen Tao, Zhang Hong-gang, Matinmikko M, et al. CogMesh: Cognitive wireless mesh networks [C]//IEEE GLOBECOM Workshops. 2008:1-6.
  • 2顾金媛,章国安,包志华.认知无线Mesh网络联合多路径路由和信道分配策略[J].计算机科学,2011,38(5):45-48. 被引量:8
  • 3Wang Li-chun,Wang Chung-wei. Load-balancing spectrum decision for cognitive radio networks[J]. IEEE Journal on Selected Areas in Communication, 2011,29(4) : 757-769.
  • 4Kim H, Shin K G. Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks[J]. IEEE Transactions on Mobile Computing,2008,7(5) :533-545.
  • 5Chun H A C,Wei D S L,Kuo C-C J. A cognitive MAC protocol using statistical channel allocation for wireless ad-hoc networks [C]//IEEE Wireless Communications and Networking Conference. 2007 : 105-110.
  • 6Zhao Q, Tong L, SWAMI A, et al. Decentralized cognitive MAC for opportunistic spectrum access in ad hoe networks: a POMDP framework[J]. IEEE Journal on Selected Areas in Communications, 2007,25 (3) : 589-600.
  • 7Zhu Ping, Li jing-long, Wang Xu-fa. A new channel parameter for cognitive radio[C]//CrownCom. 2007:482-486.
  • 8Wang Chung-wei, Wang Li-chun, Adachi F. Modeling and analysis of multi-User spectrum selection schemes in cognitive radio networks[C]//IEEE 20^th International Symposium on Personal, Indoor and Mobile Radio Communications. 2009:828-832.
  • 9Li Xiu-kui, Zekavat S A. Traffic pattern prediction and performance investigation for cognitive radio systems [C]//IEEE Wireless Communications and Networking Conference. 2008: 894-899.
  • 10Ng C-H, Soong B-H. Queuing modeling fundamentals with applications in communication networks[M]. John Wiley and Sons Inc, 2008.

二级参考文献3

共引文献7

同被引文献23

  • 1European Radio commtmications Committee (ERC).European table of frequency allocations and utilizations frequency range 9kHz to 275GHz[R].ERC Report 25,January 2002.
  • 2Natasha D,Mai Vu,Vahid T.Cognitive Radio Networks[J].IEEE Signal Processing Magazine,2008,25 (6):12-23.
  • 3Akyildiz I F,Lee W Y,Vuran M C,et al.A survey on spectrum management in cognitive radio networks[J].Communications Magazine,IEEE,2008,46(4):40-48.
  • 4Talat S T,Wang L C.Load-Balancing Spectrum Decision for Cognitive Radio Networks with Unequal-Width Channels[C]//Vehicular Technology Conference (VTC Fall),2012 IEEE.IEEE,2012:1-5.
  • 5Liao M X,He X X,Jiang X H.Optimal Algorithm for Cognitive Spectrum Decision Making[C]//COCORA 2012,The Second International Conference on Advances in Cognitive Radio.2012:50-56.
  • 6Tsagkaris K,Katidiotis A,Demestichas P.Neural networkbased learning schemes for cognitive radio systems[J].Computer Communications,2008,31 (14):3394-3404.
  • 7Chung S T,Kim S J,Lee J,et al.A game-theoretic approach to power allocation in frequency-selective Gauesian interference channels[C]//Proc.IEEE International Symposium on Inform.Theory.Pacifico,2003.
  • 8Zhang W.Handover decision using fuzzy MADM in heterogeneous networks[C]//Wireless Communications and Networking Conference.WCNC 2004 IEEE.IEEE,2004,2:653-658.
  • 9Fan Zhong-ji,Liao Ming-xue,He Xiao-xin,et al.Efficient Algorithm for Extreme Maximal Biclique Mining in Cognitive Frequency Decision Making[C]//2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN).IEEE,2011:25-30.
  • 10Ji Pan-pan,Liao Ming-xue,He Xiao-xin,et al.Extreme Maximal Weighted Frequent Itemset Mining for Cognitive Frequency Decision Making[C]//2011 International Conference on Computer Science and Network Technology (ICCSNT).IEEE,2011,1:267-271.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部