期刊文献+

一种改进的面向文本的领域概念筛选算法 被引量:5

Improved Text-oriented Algorithm for the Domain-specific Concept Sieving
下载PDF
导出
摘要 在语义技术及其应用中,本体学习是一个研究热点,而领域概念筛选则是本体学习的基础。对于领域概念筛选问题,领域一致度与领域相关度相结合的方法效果较好,却也存在信息描述不全的缺点,因此提出了一种针对此问题的改进的领域概念筛选算法。通过计算候选概念之间的语义相似度,识别出低频的具有同义关系和整体-部分关系的词语集,过滤掉部分冗余概念,然后采用改进的领域相关度和领域一致度相结合的公式进行筛选。实验表明,该方法提高了领域概念筛选的有效性。 Ontology learning is a hot research field in semantic technology and its application,and the domain-specific concept sieving is the foundation of ontology learning.Although the method based on domain relevance expressions and domain consensus expressions displays the good effectiveness for the domain-specific concept sieving,it exists the faults of unilateral description information.So this paper presented an improved sieving algorithm of the domain-specific concept to solve the above problems.First,low frequency with synonymy and the part-of relationship words set were identified and redundant concepts were filtered out through calculating the semantic similarity between candidate concept,and then using the improved field concept similarity and domain concepts consistent degree formula sieve concepts.The experiments show that this method improves the effectiveness of the domain-specific concept sieving.
出处 《计算机科学》 CSCD 北大核心 2012年第B06期253-256,共4页 Computer Science
基金 重庆市科委自然科学基金计划重点项目(CSTC 2011BA2022)资助
关键词 语义技术 本体学习 领域概念 筛选算法 上下文 Semantic technology; Ontology learning; Domain-specific concept; Sieving algorithm; Context
  • 相关文献

参考文献10

  • 1朱礼军,陶兰,黄赤.语义万维网的概念、方法及应用[J].计算机工程与应用,2004,40(3):79-83. 被引量:42
  • 2Maedche A. Staab S. Ontology learning for the semantic Web [J]. IEEE Intelligent systems, 2001,16(2) : 72-79.
  • 3Shamsfard M, BaHoroush A. Learning ontologies from natural language texts[J]. International Journal Human-computer Studies, 2004,60(1) : 17-63.
  • 4Missikoff M, Navigli R, Velardi P. Integrated approach for Web ontology learning and enginee-ring[J]. IEEE Computer, 2002,35 (11):60-63.
  • 5Moldovan D, Girju R, Rus V. Domain-specific knowledge acquisition from text [C]//Proc. of The Sixth Conference on Applied Natural Language Processing. 2000:268-275.
  • 6Velardi P, Fabriani P, Missikoff M. Using text processing techniques to automatically enrich a Domain ontology [C]//Proc. of the Formal Ontology in Information Systems. 2001:270-284.
  • 7贾秀玲,文敦伟.面向文本的本体学习中概念提取及关系提取的研究[J].中南大学,2007.
  • 8张玉芳,杨芬,熊忠阳,陈小莉.基于上下文的领域本体概念和关系的提取[J].计算机应用研究,2010,27(1):74-76. 被引量:14
  • 9王红滨,刘大昕,王念滨,王桐.一种本体学习中的领域概念筛选算法[J].系统工程与电子技术,2010,32(1):175-178. 被引量:5
  • 10刘柏嵩,高济.General ontology learning framework[J].Journal of Southeast University(English Edition),2006,22(3):381-384. 被引量:11

二级参考文献35

  • 1杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 2孔敬.本体学习:原理、方法与相关进展[J].情报学报,2006,25(6):657-665. 被引量:9
  • 3何中市,刘里.基于上下文关系的文本分类特征描述方法[J].计算机科学,2007,34(5):183-186. 被引量:6
  • 4(英)TimBemers-Lee Mark Fischetti 张宇宏 萧风译.编织万维网一万维网之父谈万维网的原初设计与最终命运[M].上海:上海译文出版社,1999.154~171.
  • 5HAN Jia-wei, KAMBER M. Data mining concepts and techniques[ M].北京:高等教育出版社,2001:230-242.
  • 6GRUBER T R. A translation approach to portable ontology specifications [J]. Knowledge Acquisition, 1993,5 ( 2 ) : 199- 220.
  • 7SABOU M. Learning Web service ontologies:an automatic extraction method and its evaluation [ C ]//Proc of the 9th IEEE International Symposium on Wearable Computers. 2005.
  • 8NAVIGLI R, VELARDI P. Learming domain ontologies from document warehouses and dedicated Web sites[J]. Computational Linguistics, 2004,30 ( 2 ) : 151 - 179.
  • 9KAROUI L, AUFAURE M A, BENNACER N. Context-based hierarchical clustering for the ontology learning [ C ]//Proc of IEEE/WIC/ ACM International Conference on Web Intelligence. Washington DC: 1EEE Computer Society, 2006:420-427.
  • 10KAROUI L. Intelligent ontology learning based on context: answering crucial questions[ C ]//Proc of International Conference on Computational Intelligence for Modelling Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Washington DC:IEEE Computer Society, 2006:260.

共引文献65

同被引文献61

  • 1张启蕊,张凌,董守斌,谭景华.训练集类别分布对文本分类的影响[J].清华大学学报(自然科学版),2005,45(S1):1802-1805. 被引量:27
  • 2张海泉.武器家谱[J].当代军事文摘,2005(3):19-19. 被引量:1
  • 3杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 4贾秀玲,文敦伟.一种本体学习中分类关系提取方法的研究[J].计算机技术与发展,2007,17(10):31-33. 被引量:11
  • 5专利分析系统:专利生命周期评价模型[EB/OL].[2011-08-02].http://www.iprtop.corn/pages/view/fn/fxxt_7/.
  • 6GRUBER T. A Translation Approach to Portable Ontology Specifications [ J] . Knowledge Acquisition,1993 , 5(2) : 199-220.
  • 7SHAMSFARD M, BARFOROUSH A. Learning Ontologies from Natural Language Texts [J]. International Journal of HumanComputer Studies, 2004,60( 1) ; 17-28.
  • 8LEE-FENG C. PAT-Tree-Based Adaptive Key Phrase Extraction for Intelligent Chinese Information Retrieval [J]. InformationProcess and Management, 1999, 35(4): 501-521.
  • 9中科院计算所.汉语分词系统ICTCLAS [EB/OL]. (2008-01-01). [2014-01-01], http://www.ictclas.org/.
  • 10Sui Zhifang,Chen Yirong.The Research on the Automatic Term Extraction in the Domain of Information Science and Technology[C]//Proceedings of the 5th East Asia Forum of the Terminology,2007.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部