摘要
在语义技术及其应用中,本体学习是一个研究热点,而领域概念筛选则是本体学习的基础。对于领域概念筛选问题,领域一致度与领域相关度相结合的方法效果较好,却也存在信息描述不全的缺点,因此提出了一种针对此问题的改进的领域概念筛选算法。通过计算候选概念之间的语义相似度,识别出低频的具有同义关系和整体-部分关系的词语集,过滤掉部分冗余概念,然后采用改进的领域相关度和领域一致度相结合的公式进行筛选。实验表明,该方法提高了领域概念筛选的有效性。
Ontology learning is a hot research field in semantic technology and its application,and the domain-specific concept sieving is the foundation of ontology learning.Although the method based on domain relevance expressions and domain consensus expressions displays the good effectiveness for the domain-specific concept sieving,it exists the faults of unilateral description information.So this paper presented an improved sieving algorithm of the domain-specific concept to solve the above problems.First,low frequency with synonymy and the part-of relationship words set were identified and redundant concepts were filtered out through calculating the semantic similarity between candidate concept,and then using the improved field concept similarity and domain concepts consistent degree formula sieve concepts.The experiments show that this method improves the effectiveness of the domain-specific concept sieving.
出处
《计算机科学》
CSCD
北大核心
2012年第B06期253-256,共4页
Computer Science
基金
重庆市科委自然科学基金计划重点项目(CSTC
2011BA2022)资助
关键词
语义技术
本体学习
领域概念
筛选算法
上下文
Semantic technology; Ontology learning; Domain-specific concept; Sieving algorithm; Context