期刊文献+

基于Meta平衡的多Agent Q学习算法研究 被引量:1

Research on Multi-agent Q Learning Algorithm Based on Meta Equilibrium
下载PDF
导出
摘要 多Agent强化学习算法的研究一直以来大多都是针对于合作策略,而NashQ算法的提出对非合作策略的研究无疑是一个重要贡献。针对在多Agent系统中,Nash平衡无法确保求得的解是Pareto最优解及其计算复杂度较高的问题,提出了基于Meta平衡的MetaQ算法。与NashQ算法不同,MetaQ算法通过对自身行为的预处理以及对其它Agent行为的预测来获取共同行为的最优策略。最后通过研究及气候合作策略游戏实验,证明了MetaQ算法在解决非合作策略的问题中有着很好的理论解释和实验性能。 Multi-agent reinforcement learning algorithms aim at cooperation strategy,while NashQ is frequently mentioned as a pivotal algorithm to the study of non-cooperative strategies.In multi-agent systems,Nash equilibrium can not ensure the solutions obtained Pareto optimal,besides,the algorithm with high computation complexity.MetaQ algorithm was proposed in this paper.It is different from NashQ that MetaQ finds out the optimal solution by the pre-treatment of its own behavior and the prediction of the others behavior.In the end,a game-climate cooperation strategy was used in this paper,and the results shows that MetaQ algorithm,with impressive performance,is fit for non-cooperative problem.
出处 《计算机科学》 CSCD 北大核心 2012年第B06期261-264,共4页 Computer Science
基金 国家自然科学基金项目(60874074) 浙江省重大科技专项(2009C11039)资助
关键词 强化学习 Meta平衡 NashQ 多AGENT系统 Reinforcement learning; Meta equilibrium; NashQ; Multi-agent system
  • 相关文献

参考文献15

  • 1Hu Jun-ling,Wellman M P. Multiagent reinforcement learning: theoretical framework and an algorithm[C]//Proceedings of the Fifteenth International Conference on Machine Learning. 1998: 242-250.
  • 2Wang Hao, Gao Yang, Chen Xing-guo. RL-DOT: A Reinforcement Learning NPC Team for Playing Domination Games[J].IEEE Transactions on Computational Intelligence and AI in Games, 2010,2 (1): 17-26.
  • 3Littman M L, Friend-or-foe q-learning in general-sum games[C]// Proceedings of the Eighteenth International Conference on Machine Learning. Williams College: Morgan Kaufman, 2001 : 322-328.
  • 4Greenwald A, Hall K, Serrano tC Correlated-q learning[C]//Proceedings of the Twentieth International Conference on. Washington DC, 2003 : 242-249.
  • 5赵凤强,徐毅,李广强.基于岛屿群体模型的多目标演化算法研究[J].计算机科学,2010,37(12):190-192. 被引量:1
  • 6宋梅萍,顾国昌,张国印,刘海波.一般和博弈中的合作多agent学习[J].控制理论与应用,2007,24(2):317-321. 被引量:7
  • 7HuJun-ling, WetlmanMP, NashQ-learning for general-sum stochastic games[J]. Journal of Machine Learning Research, 2003, 4(11):1039-1069.
  • 8Vassiliades V,Cleanthous A,Christodoulou C. Mutltiagent Reinforcement Learning: Spiking and Nonspiking Agents in the iterated Prisoner' s Dilemma [J]. IEEE Transactions on Neural Networks, 2011,22(4) : 639-653.
  • 9Aumann R J, Hart S. Computing equilibria {or two-person games. Handbook of Game Theory with Economic Applications [R]. Amsterdam: Elsevier, 2002.
  • 10Murty K G. Computational complexity of complementary pivot methods[C]//Mathematical Programming Study 7 Complementarily and Fixed Point Problems. Amsterdam: North-Holland Publishing Co, 1978:61-73.

二级参考文献15

  • 1刘旭红,刘玉树,张国英,阎光伟.多目标优化算法NSGA-II的改进[J].计算机工程与应用,2005,41(15):73-75. 被引量:22
  • 2刘德铭 黄振高.对策论及其应用[M].长沙:国防科技大学出版社,1994..
  • 3LITTMAN M L.Markov games as a framework for multi-agent reinforcement learning[C]//Proc of the Eleventh Int Conf on Machine Learning.New Brunswick,NJ San Mateo,CA:Morgan Kaufmann Publishers,1994:157-163.
  • 4HU Junling,LITTMAN M L.Multiagent reinforcement learning:theoretical framework and an algorithm[C]//Proc of the Fifteenth Int Conf on Machine Learning.Madison,Wisconson,San Mateo,CA:Morgan Kaufmann Publishers,1998:242-250.
  • 5HU Junling,WELLMAN M P.Nash Q-Learning for general-sum stochastic games[J].J of Machine Learning Research,2003,4(6):1039-1069.
  • 6LITTMAN M L.Friend or foe Q-learning in general-sum markov games[C] //Proc of the Int Conf on Machine Learning.Williams Colledge,MA,San Mateo,CA:Morgan Kaufmann Publishers,2001(a):322-328.
  • 7GREENWALD A,HALL K.Correlated Q-learning[C]//Proc of the Twentieth Int Conf on Machine Learning.Washington DC,USA:AAAI Press,2003:242-249.
  • 8LITTMAN M L,SZEPESVARI C.A generalized reinforcement learning model:Convergence and applications[C]//Proc of the 13th Int Conf on Machine Learning.Bari,Italy,San Mateo,CA:Morgan Kaufmann Publishers,1996:310-318.
  • 9DEB K.Multi-objective evolutionary algorithms:Introducing bias among pareto-optimal solutions,KanGAL report 99002[R].Kanpur,India:Indian Institute of Technology,1999.
  • 10GEANAKOPLOS J.Common knowledge[J].J of Economic Perspectives,1992,6(4):53-82.

共引文献6

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部