期刊文献+

一种基于本体与描述文本的网络图像语义标注方法 被引量:4

Semantic Annotation Method for Web Image Based on Domain Ontology and Image Description Texts
下载PDF
导出
摘要 网络图像语义自动标注是实现对互联网中海量图像管理和检索的有效途径,而自动有效地挖掘图像语义是实现自动语义标注的关键。网络图像的语义蕴含于图像自身,但更多的在于对图像语义起不同作用的各种描述文本,而且随着图像和描述知识的变化,描述文本所描述的图像语义也随之变化。提出了一种基于领域本体和不同描述文本语义权重的自适应学习的语义自动标注方法,该方法从图像的文本特征出发考查它们对图像语义的影响,先通过本体进行有效的语义快速发现与语义扩展,再利用一种加权回归模型对图像语义在其不同类型描述文本上的分布进行自适应的建模,进而实现对网络图像的语义标注。在真实的Web数据环境中进行的实验中,该方法的有效性得到了验证。 Semantic auto annotation on Web image is an important method for huge amounts of images management and retrieval on Web,and the semantic mining from the images automatically and effectively is the key.The semantic lies not only in the image itself,but also and more importantly in its description texts.Further,the image semantic varies with the change of images or description knowledge.To address this issue,in this paper,based on domain ontology and different image descriptions,we propose an adaptive semantic annotation method for Web images.This method checks the impacts on image semantic from the description texts feature.It detects the semantic and extends keyword by domain ontology,and then based on a regression model to adaptively model the Web images’ semantic distribution on its different description texts.A group of experiments are carried out on a real-world Web image data set and the experimental results show that our proposed method outperforms others is with excellent adaptivity.
出处 《计算机科学》 CSCD 北大核心 2012年第B06期293-299,共7页 Computer Science
基金 国家自然科学基金(10901062) 福建农业科技重大项目(2010N5008)资助
关键词 图像标注 本体 语义扩展 回归模型 Image annotation; Ontology; Semantic extension; Regression model
  • 相关文献

参考文献30

  • 1Mayfield J, Finin T. Information retrieval on the Semantic Web: Integrating inference and retrieval[C] // Workshop on the Semantic Web at the 26th Intl. ACM SIGIR Conference on Research and Development in Information Retrieval. 2003.
  • 2Tsarkov D, HorroeksL FACT+ + Description kogic Reasoner: System Description [C]//Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR). 2006.
  • 3Vires A,Roelleke T. Relevance Information: A Loss of Entropy but a Gain for IDF? [C]//SIGIR'05. Salvador, Brazil, 2005.
  • 4熊文新,宋柔.信息检索查询语句的表述分析[C]//第4届全国语言文字应用学术研讨会,成都.2005.
  • 5Bozsak E, Ehrig M, Handschuh S, et al. Kaon-towards a large scale semantic Web[C]// Proceeding of the Third International Conference on E-Commerce and Web Technologies 2002. Springer, 2002 : 304-313.
  • 6Sure Y, Erdmann M, Angele J, et al. On-toEdit: Collaborative ontology development for the semantic Web [C]//Proceedings of the first International Semantic Web Conference 2002. Sardinia, Italia, Springer, LNCS 2342, June 2002.
  • 7Farquhar A, Fikes R, Pratt W, et al. Collaborative ontology construction for information integration[R]. Stanford University, 1995.
  • 8Duygulu P, Barnard K, de Freitas J F G, et al. Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary[C] // Proceeding of European Conference on Computer Vision. Berlin: Spring-Verlag, 2002: 97-112.
  • 9Jeon J, Lavrenko V, Manmatha R. Automatic Image Annotation and Retrieval using Cros-Media Relevance Models[C]//Proceeding of International. ACM SIGIR. Toronto, ACM Press, 2003:119-126.
  • 10Lavrenko V, Manmatha R,Jeon J. A Model for Learning the Semantics of Pictures[C]//Proceeding. of Neural Information Processing Systems(NIPS). Vancouver and Whistler: MIT Press, 2004 : 553-560.

二级参考文献58

  • 1Li XR,Chen L,Zhang L,Lin FZ,Ma WY.Image annotation by large-scale content-based image retrieval.In:Nahrstedt K,et al.,ed.Proc.of the 14th ACM Int'l Conf.on Multimedia.Santa Barbara:ACM Press,2006.607-610.
  • 2Wang XJ,Zhang L,Jing F,Ma WY.AnnoSearch:Image auto-annotation by search.In:Hari S,Milind RN,John RS,Yong R,eds.Proc.of the Conf.Image and Video Retrieval.2006.1483-1490.
  • 3Feng HM,Shi R,Chua TS.A bootstrapping framework for annotating and retrieving WEB images.In:Schulzrinne H,et al.,eds.Proc.of the 12th ACM Int'l Conf.on Multimedia.New York:ACM Press,2004.960-967.
  • 4Tseng VS,Su JH,Wang BW,Lin YM.WEB image annotation by fusing visual features and textual information.In:Proc.of the 2007 ACM Symp.on Applied Computing,Symposium on Applied Computing.New York:ACM Press,2007.1056-1060.
  • 5Mori Y,Takahashi H,Oka R.Image-to-word transformation based on dividing and vector quantizing images with words.In:Proc.of the 1st Int'l Workshop on Multimedia Intelligent Storage and Retrieval Management.1999.
  • 6Duygulu P,Barnard K,de Freitas JFG,Forsyth DA.Object recognition as machine translation:Learning a lexicon for a fixed image vocabulary.In:Proc.of the European Conf.on Computer Vision.2002.97-112.
  • 7Blei D,Jordan M.Modeling annotated data.In:Proc.of the Int'l ACM SIGIR.Toronto:ACM Press,2003.127-134.
  • 8Jeon J,Lavrenko V,Manmatha R.Automatic image annotation and retrieval using cross-media relevance models.In:Proc.of the Int'l ACM SIGIR.Toronto:ACM Press,2003.119-126.
  • 9Li J,Wang J.Automatic linguistic indexing of pictures by a statistical modeling approach.IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(19):1075-1088.
  • 10E.Chang,G.Kingshy,G.Sychay,and G.Wu.Cbsa:Content-Based soft annotation for multimodal image retrieval using Bayes point machines.IEEE Trans.on CSVT,2003,13(1):26-38.

共引文献23

同被引文献25

  • 1周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:154
  • 2CASTRO J L, DELGADO M, MEDINA J. Intelligent surveillance system with integration of heterogeneous information for intru- sion detection [J]. Exp Sys Appl, 2011,38(9) :11182-11192.
  • 3LUO Z H, WU J T. The integration of directional information and local region information for accurate image segmentation[J]. Pat Recong Lett, 2011,32 (15) : 1990-1997.
  • 4DAVID G, IGOR A. Accuracy and performance of the state-based and liveliness measures of information integration [ J ]. Cons Cogn, 2011,20(4) :1403-1424.
  • 5ZHOU L N, AMMAR S M, ZHANG D S. Mobile persona informationl management agent: supporting natural language interface and application integration [ J ]. Inform Proe Manage, 2012,48 ( 1 ) : 23 -31.
  • 6SHI L, ROSSITZA S. User-oriented ontology-based clustering of stored memories [ J]. Expert Sys Appl, 2012,39 (10) :9730- 9742.
  • 7CARMEN M, ALBERT V D H, DANIEL S. An approximation to the computational theory of perceptions using ontologies [ J ]. Expert Sys Appl, 2012,39 (10) :9494-9503.
  • 8JEF P, PETER V P. Measuring integration of information and communication technology in education : An item response mod- eling approach[ J]. Comput Edu, 2012,58 (4) : 1247-1259.
  • 9HSIEH S H, LIN H T, CHIN W, et al. Enabling the development of base domain ontology through extraction of knowledge from engineering domain handbooks [ J ]. Adv Engin Inform, 2011,25 (2) :288-296.
  • 10Gruber T R. A translation approach to portable ontol-ogy specifications[J]. Knowledge Acquisition, 1993,5 (2): 199-221.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部