期刊文献+

结合SVD_TLS及EKF算法的动态自组织模糊神经网络在动态系统中的应用

Dynamic Self-organizing Fuzzy Neural Network Combined with SVD_TLS and EKF Algorithm Used for Dynamic System Processing
下载PDF
导出
摘要 针对如何优化模糊神经网络的规则及如何合理地调整非线性参数及线性参数等问题,提出了将奇异值分解_总体最小二乘法(SVD_TLS)及扩展卡尔曼滤波(EKF)相结合的动态自组织模糊神经网络(STD_DSFNN)。首先给出了STD_DSFNN的结构及各层的含义;其次,用EKF算法学习非线性参数,SVD_TLS算法学习线性参数的同时提取重要模糊规则;最后,通过典型的Machey-Glass时间序列预测实例验证SVD_TLS及EKF相结合的动态自组织模糊神经网络(STE_DSFNN),同时与DFNN、ANFIS及UKF_DFNN相对比,结果表明STE_DSFNN网络结构更紧凑,具有更好的泛化能力。 This paper proposed SVD_TLS and EKF based dynamic self-organizing fuzzy neural network(STD_DSFNN)for optimizing fuzzy rules and Adjusting nonlinear and linear parameters reasonably.Firstly,the structure and meanings of each layer are given.Then nonlinear parameters are learned by using EKF algorithm,the linear parameters are learned by using SVD_TLS algorithm which also extract important rules at the same time.At last,the STE_DSFNN is verified through the typical Machey-Glass time series prediction examples.The results show that the STE_DSFNN network structure is more compact and has better generalization ability compared with the DFNN、ANFIS and UKF_DFNN.
作者 李云
出处 《计算机科学》 CSCD 北大核心 2012年第B06期401-403,共3页 Computer Science
关键词 奇异值分解_总体最小二乘法 扩展卡尔曼滤波 动态自组织模糊神经网络 SVD_TLS algorithm; EKF algorithm; Dynamic self-organizing fuzzy neural network
  • 相关文献

参考文献7

  • 1Wu S Q, Er M J. Dynamic fuzzy neural networks: a novel approaeh to function approximation [J]. IEEE Trans Systems, Man and Cybernetics, Part B, 2000,30 (4): 358-364.
  • 2Wu S Q, Er M J. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks [J]. IEEE Trans Fuzzy Systems, 2001,9(5): 578-594.
  • 3Chu K C,Gang F,Jian M. An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces [J]. IEEE Trans System, Man and Cybernetics, Part B, 1998,28 (3):436-446.
  • 4Er M J,Wong W M,Wu S Q, A comparative study of different methods for realizing D-FNN algorithm [C]//Proc of the 38^th IEEE Conference on Decision and Control. 1999:652-661.
  • 5Lin C T, Lee C S G. Neural-Network-Based Fuzzy Logic Control and Decision System [J]. IEEE Trans Computers, 1991, 40 1320-1336.
  • 6李庆良,雷虎民,徐小来.基于UKF的自组织模糊神经网络训练算法[J].系统工程与电子技术,2010,32(5):1029-1033. 被引量:5
  • 7Van Huffel S. Subset Selection Using the Total Least Squares Approach in Collinearity Problems with Errors in the Variables [J]. Linear Algeb. Application, 1987,88(89) : 695-714.

二级参考文献12

  • 1张海涛,李大字,靳其兵,耿延睿.基于无先导卡尔曼滤波的RBFN训练算法研究[J].北京化工大学学报(自然科学版),2007,34(2):221-224. 被引量:6
  • 2Wu S Q,Er M J.Dynamic fuzzy neural networks:a novel approach to function approximation[J].IEEE Trans.on Systems,Man and Cybernetics,Part B,2000,30(4):358-364.
  • 3Wu S Q,Er M J,Gao Y.A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J].IEEE Trans.on Fuzzy Systems,2001,9(5):578-594.
  • 4Gang L,Girijesh P,Thomas M M.An approach for on-line extraction of fuzzy rules using a self-organizing fuzzy neural networks[J].Fuzzy Sets and Systems,2005,15(2):211-243.
  • 5Gang L,Thomas M M,Girijesh P.Design for self-organizing fuzzy neural networks based on genetic algorithms[J].IEEE Trans.on Fuzzy Systems,2006,14(6):755-766.
  • 6Chu K C,Gang F,Jian M.An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces[J].IEEE Trans.on Systems,Man and Cybernetics,Part B,1998,28(3):436-446.
  • 7Er M J,Wong W M,Wu S Q.A comparative study of different methods for realizing D-FNN algorithm[C] ∥Proc.of the 38th IEEE Conference on Decision and Control,1999:652-661.
  • 8Julier S J,Uhlmann E K.Unscented filtering and nonlinear estimation[J].Proc.of the IEEE,2004,92(3):401-422.
  • 9Dan S.A comparison of filtering approaches for aircraft engine health estimation[J].Aerospace Science and Technology,2008,31(12):276-284.
  • 10Xiong K,Chan C W,Zhang H Y.Detection of satellite attitude sensor faults using the UKF[J].IEEE Trans.on Aerospace and Electronic Systems,2007,43(2):480-482.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部