期刊文献+

基于特征灰度和分水岭变换的甲藻横沟区域分割 被引量:1

Method of Pyrrophyta Cingulum Segmentation Based on Dominant Gray Levels and Watershed Transform
下载PDF
导出
摘要 针对分水岭变换存在的过分割问题,提出了一种新的图像分割方法。该方法利用灰度包容球获取图像特征灰度集合,通过降低图像中灰度级数目减少无意义的局部极小值区域,对灰度重构后的梯度图像极小值区域采用自动阈值法进行标记并对标记加以质心、形状和面积约束,对修改后的梯度图像采用分水岭变换实现甲藻显微图像中横沟区域的分割。实验证明,该方法可比传统方法更合理地分割出横沟区域,有效抑制了过分割现象。 To tackle the over-segmentation problem in watershed algorithm,a method based on dominant gray levels and constraint marker watershed was proposed to extract cingulum region.In this algorithm,original image was reconstructed by dominant gray levels,eliminating local minima and noise disturber.Then markers of regional minima were extracted from gradient image by using auto-threshold,and imposed by shape,area and centroid constraints.The watershed transform of the maker-modified gradient image was performed to achieve the cingulum region segmentation.Simulation results show that the new scheduling algorithm has the benefits of less over-segmentation areas,the more accurate segmentation result and higher flexibility compared to the traditional algorithms.
作者 乔小燕
出处 《计算机科学》 CSCD 北大核心 2012年第B06期555-558,共4页 Computer Science
基金 国家自然科学基金(11171191) 山东省高等学校科研计划项目(J11LG13)资助
关键词 赤潮藻 显微图像分割 分水岭变换 Harmful algae; Microscopic image segmentation; Watershed transform
  • 相关文献

参考文献13

  • 1苏纪兰.中国的赤潮研究[J].中国科学院院刊,2001,16(5):339-342. 被引量:48
  • 2高亚辉,杨军霞,骆巧琦,高华,杨晨辉,李雪松,梁君荣,陈长平.海洋浮游植物自动分析和识别技术[J].厦门大学学报(自然科学版),2006,45(A02):40-45. 被引量:21
  • 3du Buf H, Bayer M M. Automatic Diatom Identification[M]. World Scientific,Series in Machine Perception and Artificial Intelligence, 2002,51: 316.
  • 4Culverhouse P F, Simpson R G, Ellis R, et al. Automatic classification of field collected dinoflagellates by artificial neural network[J]. Marine Ecology Progress Serries, 1996,139:281-287.
  • 5Davis C S, Fredrik T, et al. A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography[J]. American Society of Limnology and Oceanography: Methods 3,2005 : 59-74.
  • 6Tang X, Lin F, Andrew Remsen. Binary plankton image classification[J]. IEEE Journal of Oceanic Engineering, 2006,31 (3) 728-735.
  • 7Soille P. Morphological Image Analysis:Principles and Applications(Second edition)[M]. Springer-Verlag, 2008.
  • 8Salembier P. Morphological Multi-scale Segmentation for Image Coding[J]. Signal Processing, 1994,38: 359-386.
  • 9Yaakov T, Amir A. Automatic Segmentation of Moving Objects in Video Sequences: A Region Labeling Approach [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(7): 597-612.
  • 10Haris K, Efstratiadis S N, Maglaveras N, et al. Hybrid Image Segmentation Using Watersheds and Fast Region Merging[J].Image Processing, 1998,7(12) - 1684-1699.

二级参考文献47

共引文献69

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部