期刊文献+

基于奇异值分解和径向基函数神经网络的人脸识别算法研究 被引量:2

Research on Face Recognition Algorithm Based on SVD and RBF Neural Network
下载PDF
导出
摘要 提出一种基于奇异值分解和径向基函数神经网络的人脸特征提取与识别方法,来解决人脸识别中的高维、小样本问题。该方法采用奇异值分解、奇异值降维压缩、奇异值矢量标准化和奇异值矢量排序,最后得到用于识别的奇异值特征矢量。运用基于径向基函数神经网络分类器进行人脸分类识别。在ORL数据库上进行实验和数据分析表明,该方法无论是在分类的错误率上还是在学习的效率上都能表现出极好的性能。 To solve the problem of high dimension and small sample in face recognition,this paper proposed a facial feature extraction and recognition method based on singular value decomposition and radial basis function neural network.By singular value decomposition,dimension reduction and compression,vector standardization and vector sorting,we finally got the feature vectors of singular value used to identify.It used the neural network classifier based on radial basis function to classify and recognize face.The experiments and data analysis on ORL database show that,this method has good performance whether in the error rate of classification or in the learning efficiency.
出处 《计算机科学》 CSCD 北大核心 2012年第B06期566-569,共4页 Computer Science
基金 广东省自然科学基金(S2011020002719 10152800001000016)资助
关键词 RBF神经网络 奇异值分解 特征提取 人脸识别 Radial basis function neural network; Singular value decomposition; Feature extraction; Face recognition
  • 相关文献

参考文献12

  • 1Hong Z Q. Algebraic feature extraction of image for recognition [J]. Pattern Recognition, 2010,24(3) : 211-219.
  • 2Cheng Y, et al. Human Face recognition Method Based on the Statistical Model of Small Sample Size [A]//SPIE Proceedings on Intelligent Robots and Computer Vision [C]. Boston Massachusetts, USA, 2009 : 85-95.
  • 3王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报,2000,23(6):649-653. 被引量:58
  • 4Lawrence S, et al. Face recognition., a convolution neural-network approach [J]. IEEE Transactions on Neural networks, 2007,8 (1): 98-113.
  • 5Nebauer C. Evaluation of convolution neural networks for visual Recognition [J]. IEEE Trans, Neural Networks, 2008, 9 (4): 685-69.
  • 6Turk M A,Pentland A P. Eigenfaces for Recognition[J]. J. Cognitive Neuroscience, 2009(3): 71-86.
  • 7Fukunaga K. Introduction to Statistical Pattern Recognition(2nd ed)[M]. San Diego,CA:Academic Press,2010.
  • 8Swets D L,Weng J. Using Discriminant Eigenfeatures for Image Retrieval[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2006(18) : 831-836.
  • 9Lotlikar R, kothari R. Fractional-Step Dimensionality Reduction [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2010(22): 623-627.
  • 10Lawrence S, Giles C L, Tsoi A C, et al. Face Recognition: A Convolutional Neural-Network Approach[J]. IEEE Trans. Neural Networks, Special Issue on Neural Networks and Pattern Recognition, 2007(8) : 114-132.

二级参考文献4

  • 1Zhang Jun,IEEE Proc,1997年,85卷,9期,312页
  • 2Cheng Y,Proceedings of the 11th International Conference on Pattern Recognation,1992年,221页
  • 3Cheng Yongqing,SPIE.Proceedings on Intelligent Robots and Computer,1991年,85页
  • 4Hong Z,Pattern Recognition,1991年,24卷,3期,211页

共引文献57

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部