期刊文献+

基于神经网络的MBR仿真预测的研究

Research of MBR Simulation Predictions Based on Neural Network
下载PDF
导出
摘要 该文在分析MBR膜污染形成机制、膜污染影响因素的基础上,首先利用主元分析法对影响膜污染的各种参数实现输入变量的降维和去相关,求出影响膜污染最为明显的三大因素:混合液悬浮固体(MLSS)、总阻力和操作压力(TMP),进而运用BP和RBF人工神经网络建立了这三大参数与表征膜污染程度大小的膜通量之间关系的MBR智能仿真系统模型,并分析了两种神经网络模型MBR污水处理膜污染过程的适应能力。实验结果表明:1)神经网络模型可以准确地反映出实际情况,具有很好的自适应能力;2)PCA—RBF神经网络模型的收敛精度高而且速度快于PCA-BP神经网络模型。 In this paper, based on the analysis of the MBR membrane fouling formation mechanism and the impact factors of membrane fouling, first of all,authors used principal component analysis on various parameters affecting the membrane fouling to achieve dimensionality reduction and decorrelation of the input variables and obtain the most obvious three factors affecting membrane fouling: the mixed liquor suspended solids (MLSS), the total resistance and the operating pressure (TMP), second, established the MBR intelligent simulation system model reflecting the relationship between the three parameters and the membrane flux characterizing the size of the extent of membrane fouling with BP and RBF neural network, and then analyzed the adaptability of the two neural network models with MBR wastewater treatment membrane fouling process. The experimental results show: 1) the neural network model can accurately reflect the actual situa- tion, with a good adaptive capacity; 2) the convergence precision and the approximation rate of the R_BF neural network model are better than BP neural network model.
作者 闫宏英 李春青 YAN Hong-ying ,LI Chun-qing (Tianjin Polytechnic University ,Computer Science and Software Institution, Tianjin 300387,China)
出处 《电脑知识与技术》 2012年第6期3934-3937,共4页 Computer Knowledge and Technology
基金 国家自然科学基金项目(50808130) 天津市自然科学基金(重点项目)07JCZDJC1400 中国纺织服装协会科技指导项目(2008062)
关键词 膜生物反应器 膜通量 BP神经网络 RBF神经网络 主成分分析法 MBR membrane flux BP neural network RBF neural network principal component analysis
  • 相关文献

参考文献10

二级参考文献43

  • 1曲东才.增强神经网络辨识模型泛化能力的研究[J].海军航空工程学院学报,2007,22(1):109-113. 被引量:8
  • 2杜建成.主成分分析法确定降水化学组分中主要污染物[J].环境监测管理与技术,1995,7(2):37-38. 被引量:2
  • 3张劲锋,蔡伟.基于组合不变矩的空间目标识别[J].控制工程(北京),2006(6):14-17. 被引量:1
  • 4孙茂亭.西方石油公司地震资料插值处理效果[J].国外油气勘探,1996,8(2):207-213. 被引量:1
  • 5[1]HU M K.Visual Pattern Recognition by Moment Invariants[J].IEEE Transactions on Information Theory,1962,8(2):179-187.
  • 6[2]WONG W H,SIU W C.Improved Digital Filter Structure for Fast Moment Computation[J].IEE Proceedings in Vision,Image,and Signal Processing,1999,146:73-79.
  • 7[3]DUDANI S A,BREEDING K J,MCGHEE R B.Aircraft Identification by Moment Invariants[J].IEEE Transactions on Computers,1983,26(1):39-45.
  • 8[4]LIAO S X,PAWLAK M.On the Accuracy of Zernike Moments for Image Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(12):1358-1364.
  • 9[5]ZION B,SHKLYAr A,KARPLUS I.In-vivo Fish Sorting by Computer Vision[J].Aquaculture Engineering,2000,22:165-179.
  • 10[6]SHUTLER J D,NIXON M S,HARRIS C J.Zernike Velocity Moments for Description and Recognition of Moving Objects[C]//Proceeding of British Machine Vision Association,2001:705-714.

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部