期刊文献+

Numerical simulation and analysis of dynamic compensation for atmosphere turbulence based on stochastic parallel gradient descent optimization 被引量:3

Numerical simulation and analysis of dynamic compensation for atmosphere turbulence based on stochastic parallel gradient descent optimization
原文传递
导出
摘要 We present the numerical simulation and analysis of the bandwidth estimation for adaptive optics (AO) systems based on stochastic parallel gradient descent (SPGD) optimization. Time-varying atmosphere turbulence due to wind velocity and turbulence structure constant is considered in the dynamic simulation. The performance of SPGD system with different iteration frequencies is studied in detail. A formula given that estimates the Strehl ratio degradation after SPGD adaptive control due to the increasing proportion of the number of deformable mirror actuator times Greenwood frequency to iteration frequency based on numerical analyses, can be used to roughly predict the required iteration frequency under the condition of various Greenwood freauencies. We present the numerical simulation and analysis of the bandwidth estimation for adaptive optics (AO) systems based on stochastic parallel gradient descent (SPGD) optimization. Time-varying atmosphere turbulence due to wind velocity and turbulence structure constant is considered in the dynamic simulation. The performance of SPGD system with different iteration frequencies is studied in detail. A formula given that estimates the Strehl ratio degradation after SPGD adaptive control due to the increasing proportion of the number of deformable mirror actuator times Greenwood frequency to iteration frequency based on numerical analyses, can be used to roughly predict the required iteration frequency under the condition of various Greenwood freauencies.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第B06期5-8,共4页 中国光学快报(英文版)
  • 相关文献

参考文献11

  • 1T. Weyrauch and M. A. Vorontsov, Appl. Opt. 44,6388 (2005).
  • 2T. Weyrauch and M. A. Vorontsov, Proc. SPIE 5162, 1 (2003).
  • 3N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, J. Opt. Soc. Am. A 73, 525 (1983).
  • 4C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Brarclay, J. Herrmann, Appl. Opt. 34, 2081 (1995).
  • 5M. A. Vorontsov and G. W. Carhart, Opt. Lett. 22, 907 (1997).
  • 6M. A. Vorontsov and G. W. Carhart, J. Opt. Soc. Am. A 17, 1440 (2000).
  • 7F. Roddier, Adaptive Optics in Astronomy (Cambridge University, Cambridge, 1999).
  • 8R. K. Tyson, Principle of Adaptive Optics (Academic Press, Carolina 1991).
  • 9J. C. Spall, IEEE Trans. Autom. Control. 37, 332 (1992).
  • 10J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, Hoboken, 2003).

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部