摘要
We present the numerical simulation and analysis of the bandwidth estimation for adaptive optics (AO) systems based on stochastic parallel gradient descent (SPGD) optimization. Time-varying atmosphere turbulence due to wind velocity and turbulence structure constant is considered in the dynamic simulation. The performance of SPGD system with different iteration frequencies is studied in detail. A formula given that estimates the Strehl ratio degradation after SPGD adaptive control due to the increasing proportion of the number of deformable mirror actuator times Greenwood frequency to iteration frequency based on numerical analyses, can be used to roughly predict the required iteration frequency under the condition of various Greenwood freauencies.
We present the numerical simulation and analysis of the bandwidth estimation for adaptive optics (AO) systems based on stochastic parallel gradient descent (SPGD) optimization. Time-varying atmosphere turbulence due to wind velocity and turbulence structure constant is considered in the dynamic simulation. The performance of SPGD system with different iteration frequencies is studied in detail. A formula given that estimates the Strehl ratio degradation after SPGD adaptive control due to the increasing proportion of the number of deformable mirror actuator times Greenwood frequency to iteration frequency based on numerical analyses, can be used to roughly predict the required iteration frequency under the condition of various Greenwood freauencies.