期刊文献+

具p-Laplacian算子时滞微分方程边值问题解的存在唯一性 被引量:5

Existence and Uniqueness of Solutions for Delay Boundary Value Problems with p-Laplacian on Infinite Intervals
下载PDF
导出
摘要 本文主要研究无穷区间上具有p-Laplacian算子的时滞微分方程边值问题解的存在性和唯一性,利用Schauder不动点定理得到解的存在性,由Banach压缩映射原理证明解的唯一性,并给出一个例子来说明主要结果的应用。 This paper is concerned with the existence and uniqueness of solutions for boundary value problems with p-Laplacian delay differential equations on the half-line. The existence of solutions is derived from the Schauder's fixed point theorem,whereas the uniqueness of solution is established by the Banach's contraction principle. An example is given to demonstrate the main results of its application.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期48-53,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11061006 61074049) 广西教育厅科研项目(201012MS025)
关键词 时滞微分方程 边值问题 不动点定理 无限区间 delay differential equation boundary value problem fixed point theorem infinite interval
  • 相关文献

参考文献14

  • 1AGARWAL R P,O'REGAN D. An infinite interval problem arising in circularly symmetric deformations of shallow membrane caps [J]. International Journal of Nonlinear Mechanics, 2004,39(5):779-784.
  • 2DRIVER R D. Ordinary and delay differential equations [M]. New York:Springer-Verlag, 1977.
  • 3AGARWAL R P. O'REGAN D. Infinite interval problems for differential,difference and integral equations[M]. Dor- dreeht :Kluwer Academic Publishers, 2001.
  • 4AGARWAL R P,O'REGAN D,WONG P J Y. Positive solutions of differential,difference and integral equations [M ]. Dordreeht : Kluwer Academic Publishers, 1999.
  • 5BAI Ding-yong,XU Yuan-tong. Existence of positive solutions for boundary value problems of second order delay dif- ferential equations[J]. Applied Mathematics Letters ,2005,18 (6) : 621-630.
  • 6AGARWAL R P,PHILOS C G,TSAMATOS P C. Global solutions of a singular initial value problem to second order nonlinear delay differential equations[J]. Mathematical and Computer Modelling,2006,43(7/8):854-869.
  • 7BAI Chuan-zhi,FANG Jin-xuan. On positive solutions of boundary value problems for second-order functional differ- ential equations on infinite intervals[J]. J Math Anal Appl, 2003,282 (2) : 711-731.
  • 8HALE J K ,LUNEL S M V. Introduction to functional differential equations[M]. New York:.Springer-Verlag, 1993.
  • 9MAVRIDIS K G,PHILOS C G,TSAMATOS P C. Multiple positive solutions for a second order delay boundary value problem on the half-line[J]. Annales Poloniei Mathematiei, 2006,88 (2) : 173-191.
  • 10韦煜明,杜波,葛渭高.无穷区间上二阶时滞微分方程边值问题解的存在性[J].徐州师范大学学报(自然科学版),2008,26(2):26-29. 被引量:1

二级参考文献6

  • 1Erbe L H,Kong Qingkai. Boundary value problems for singular second-order functional differential equations[J]. J Comput Appl Math, 1994,53 (3) : 377.
  • 2Liu Zhaoli,Li Fuyi. Multiple positive solutions of nonlinear two-point boundary value problem[J]. J Math Anal Appl, 1996,203(3) :610.
  • 3Jiang Daqing,Wang Junyu. On boundary value problems for singular second-order functional differential equations [J]. J Comput Appl Math, 2000,116 (2) : 231.
  • 4Mavridis K G, Philos Ch G,Tsamatos P Ch. Existence of solutions of a boundary value problem on the half-line to second order nonlinear delay differential equations[J]. Arch Math (Basel), 2006,86 (2) : 163.
  • 5Agarwal R P,Philos Ch G,Tsamatos P Ch. Global solutions of a singular initial value problem to second order nonlinear delay differential equations[J]. Mathematical & Computer Modelling,2006,43 (7-8):854.
  • 6Avramescu C. Surl existence des solutions convergentes de systemes dequations differentielles non lineaires[J]. Ann Mat Pura Appl, 1969,81 (2) : 147.

共引文献60

同被引文献69

  • 1张朝伦.关于算子方程U^*nT=λT的解[J].西华大学学报(自然科学版),2006,25(5):71-71. 被引量:1
  • 2刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 3朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 4魏俊杰,黄启昌.关于具有限时滞Liénard方程周期解的存在性[J].科学通报,1997,42(9):906-909. 被引量:5
  • 5Bae $, Hadiji R, Vigneron F, et al. A non- linear problem involving a critical Sobolev exponent[ J]. J Math Anal Appl,2012, 396( 1 ) :98 - 107.
  • 6Zhang Y J. Multiple solutions of an inhomogeneous Neumann problem for an elliptic system with critical Sobolev exponent [ J ]. Nonlinear Anal:TMA,2012,75 (4) :2047 -2059.
  • 7Lin H L. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent[ J]. Nonlinear Anal :TMA, 2012,75 (4) :2660 - 2671.
  • 8Lu D F. Multiple solutions for a class of biharmonic elliptic systems with Sobolev critical exponent [ J ]. Nonlinear Anal:TMA, 2011,74(17) :6371 -6382.
  • 9Wu T F. Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign- changing weight[ J ]. J Diff Eqns ,2010,249 (7) : 1549 - 1578.
  • 10Li T X, Wu T F. Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent[j]. J Math Anal Appl, 2010,369( 1 ) :245-257.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部