期刊文献+

局部遍历随机环境下一个重伸缩过程收敛的结果

A Convergence Result of a Rescale Process Within Locally Ergodic Random Environment
下载PDF
导出
摘要 考虑一个重伸缩过程(Xη,εt)t≥0,假设{η(x)}x∈Z是由局部遍历性的概率测度分布的,本文研究此过程当ε→0时的极限。证明了在局部遍历性分布条件下,对于R上的二阶连续可微函数f(X)和某个与η独立的齐次扩散函数a(X),这个重伸缩过程依分布με收敛到R上具有无穷小生成元d/dX(a(X)d/dXf(X))的扩散过程。 This paper considers a rescaled process (Xη,εt)t≥0,and it's assumed that {η(x)}x∈Z is distributed by a locally ergodic probability measure. The limit of the rescaled process is studied as ε→0. It is proved that under local ergodicity distributions,the rescaled process converges in distribution με to the diffusion process on R with infinitesimal generator d/dX(a(X)d/dXf(X)),for second-order continuous differentiable function f(X) on R and a certain homogenized diffusion function a(X) which is independent of η.
作者 胡华
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期66-70,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61063020) 宁夏自然科学基金资助项目(NZ1050) 宁夏研究生教育创新计划项目(2010)
关键词 局部遍历性 随机游动 重伸缩过程 无穷小生成元 locally ergodic random walk rescaled process infinitesimal generator
  • 相关文献

参考文献13

  • 1KOZLOV S M. The method of averaging and walks in inhomogeneous environments[J]. Russian Math Surveys, 1985, 40(2) : 73-145.
  • 2李勇.一类平移不变无穷粒子反应扩散过程的遍历性[J].数学年刊(A辑),1995,1(2):223-229. 被引量:2
  • 3SIRI P. Asymptotic behaviour of a tagged particle in an inhomogeneous zero-range process[J]. Stochastic Process Ap- pl, 1998,77 (2) ; 139-154.
  • 4GRIGORESCU I. Self-diffusion for Brownian motions with local interaction[J]. Ann Probab, 1999,27(3):1208-1267.
  • 5周宗林.关于一类非平衡交互作用粒子系统的相变[J].数学年刊(A辑),1996,1(3):301-310. 被引量:1
  • 6王子亭.随机介质中扩散过程的尺度跃迁[J].数学的实践与认识,2001,31(5):550-555. 被引量:1
  • 7ANSHELEVICH V V,KHANIN K M,SINAI Y G. Symmetric random walks in random environments [J]. Comm Math Phys, 1982,85 (3) :449-470.
  • 8KUNNEMANN R. The diffusion limit for reversible jump processes on Z^d with ergodic random bond conductivities [J]. Comm Math Phys, 1983,90(1): 27-68.
  • 9De MASI A,FERRARI P A ,GOLDSTEIN S,et al. An invariance principle for reversible Markov processes. Applica tions to random motions in random environments[J]. J Statist Phys, 1989,55(3/4): 787-855.
  • 10KIPNIS C,VARADHAN S R S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions [J]. Comm Math Phys, 1986,104 (1) : 1-19.

二级参考文献9

  • 1[1]Bert φKsendal. Stochastic Differential Equtions. Spring-Verlag World Publishing Corp,1989.
  • 2[2]Ioannis Karatzas, Steven E Shreve. Brownian Motionand Stochastic Calculus Springer-Verlag World Publishing Corp, 1988.
  • 3[3]DE Ma-si, Ferrari P, Goldstein S, Wick D. An invariance principe for Markov processes. Application to random motion in random enviroments, J Statist Phys, 1989,55: 787~856.
  • 4Chen M F,1992年
  • 5Chen M F,Acta Math Sci,1991年,9卷,1期,7页
  • 6Ding Wanding,Probab Theory Relat Fields,1990年,85卷,13页
  • 7Chen M F,Acta Math Sin New Ser,1985年,1卷,3期,261页
  • 8Chen M F,CARR reports in math phys,1993年,16期
  • 9Chen M F,Markov chains to non.equilibrium particle systems,1992年

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部