摘要
考虑一个重伸缩过程(Xη,εt)t≥0,假设{η(x)}x∈Z是由局部遍历性的概率测度分布的,本文研究此过程当ε→0时的极限。证明了在局部遍历性分布条件下,对于R上的二阶连续可微函数f(X)和某个与η独立的齐次扩散函数a(X),这个重伸缩过程依分布με收敛到R上具有无穷小生成元d/dX(a(X)d/dXf(X))的扩散过程。
This paper considers a rescaled process (Xη,εt)t≥0,and it's assumed that {η(x)}x∈Z is distributed by a locally ergodic probability measure. The limit of the rescaled process is studied as ε→0. It is proved that under local ergodicity distributions,the rescaled process converges in distribution με to the diffusion process on R with infinitesimal generator d/dX(a(X)d/dXf(X)),for second-order continuous differentiable function f(X) on R and a certain homogenized diffusion function a(X) which is independent of η.
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2012年第2期66-70,共5页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(61063020)
宁夏自然科学基金资助项目(NZ1050)
宁夏研究生教育创新计划项目(2010)