摘要
通过对称的双边Bailey变换证明了两个新的q-级数恒等式;同时利用q-二项式定理和发生函数法,建立了几个和式的递推关系,并利用已有的q-级数恒等式得到了Ramanujan恒等式的一般形式.
Two q-series identities were proved by symmetrical and bilateral Bailey's transform. Several recurrence relations of some summations are established by employing generating functions and q-binomial theorem. A normal form of Ramanujan's identity was given with q-series identities.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第4期32-34,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
河南省教育厅科学技术研究重点项目(12B110030)