期刊文献+

基于稀疏表示和约束优化的波达方向估计方法 被引量:1

DOA estimation method based on sparse representation and constrained optimization
下载PDF
导出
摘要 对于噪声环境中信号源的波达方向(DOA)估计,传统的多信号分类(MUSIC)算法只对不相干信号有效,且所需较多样本。针对此问题,将进行DOA估计的搜索范围看作冗余字典,从而待估计的DOA成为该冗余字典中的某些元素,可以由冗余字典对其进行稀疏表示;其次,利用单次快拍数据,应用二阶锥(SOC)约束优化的方法对该稀疏表示问题进行描述,并进而转化为标准的二阶锥形式,采用有效的优化工具SeDuMi来实现DOA的估计。仿真结果表明,与现有的子空间方法相比,该方法只需单拍数据即可得到较好的估计结果,且无需对信源个数有先验知识,同时适用于相干和非相干信号。 For Direction-Of-Arrival (DOA) estimation of signal in additive noise, the traditional Multiple Signal Classification (MUSIC) algorithm cannot process the coherent signal with fewer snapshots. The searching scope of estimated DOA was considered as redundant dictionary. Consequently, the estimated DOA was taken as some elements in the dictionary, and could be represented sparsely by the dictionary. Then, this problem was thrown into the Second Order Cone (SOC) constraints and an efficient estimation algorithm using a single snapshot was developed. This constrained problem could be depicted as a standard SOC form and be solved by the SeDuMi, an optimization toolbox. The simulation results show that the proposed algorithm has a few advantages over the existing subspace method including one single snapshot to be needed, no requirement for the number of source signals, ability to work with coherent and non-coherent signals.
作者 郭莹 孟彩云
出处 《计算机应用》 CSCD 北大核心 2012年第8期2106-2108,2127,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61102123) 辽宁省教育厅一般项目(L2011019) 沈阳工业大学中青年骨干教师资助项目 沈阳工业大学博士启动项目
关键词 波达方向估计 单次快拍 二阶锥 子空间 稀疏表示 Direction-Of-Arrival (DOA) estimation single snapshot Second Order Cone (SOC) subspace sparserepresentation
  • 引文网络
  • 相关文献

参考文献11

  • 1LIU XIAOLI, LIA GUISHENG. Direction finding and mutual coupling estimation for bistatic MIMO radar[J].Signal Processing, 2012,92(2):517-522.
  • 2FORSTE P, LARZABAL P, BOYER E. Threshold performance analysis of maximum likelihood DOA estimation[J].IEEE Transactions on Signal Processing, 2004, 52(11): 3183-3191.
  • 3PARK C-S, CHOI J-H, YANG J-W, et al. Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources[C]// ICACT 2009: 11th International Conference on Advanced Communication Technology. Piscataway: IEEE, 2009:2295-2298.
  • 4WANG Y-Y, HUANG S-C. An ESPRIT-based algorithm for 2D-DOA estimation[J].IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A(9):1847-1850.
  • 5ZHAO QIAN,LIANG WENJUAN.A Modified MUSIC algorithm based on eigen space[C]// Advances in Intelligent and Soft Computing. Berlin: Springer-Verlag, 2011,104:271-276.
  • 6GAO FEIFEI, NALLANATHAN A, WANG YIDE. Improved MUSIC under the coexistence of both circular and noncircular sources[J].IEEE Transactions on Signal Processing, 2008, 56(7): 3033-3038.
  • 7PILLAI S U, KWON B H. Forward/backword spatial smoothing techniques for coherent signal identification[J].IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(1):8-15.
  • 8DMOCHOWSKI J, BENESTY J, AFFES S. Direction of arrival estimation using eigenanalysis of the parameterized spatial correlation matrix[C]// ICCASSP 2007: IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2007, 1: 1-4.
  • 9刘丹华,石光明,周佳社.一种冗余字典下的信号稀疏分解新方法[J].西安电子科技大学学报,2008,35(2):228-232. 被引量:35
  • 10TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J].Journal of Royal Statistical Society, Series B: Methodological, 1996, 58(1):267-288.

二级参考文献1

共引文献34

同被引文献11

  • 1Capon J. High-resolution Frequency-wavenumber Spectrum Analysis [J]. Proceedings of IEEE,1969,57 (8): 1408-1418.
  • 2Stoica P,Li P,Li J. A New Derivation of the Apes Filter[J]. IEEE Signal Processing Letters, 1999,6(8 ): 205-206.
  • 3Schmidt R. Multiple Emitter Location and Signal Parameter Estimation [J ]. IEEE Transactions on Antennas and Propa- gation, 1986,34(3 ): 276-280.
  • 4Roy R, Kailath T. Esprit-estimation of Signal Parameters via Rotational Invariance Techniques [ J ]. IEEE Transactions on Acoustics,Speech and Signal Processing, 1989,37 (7): 984-995.
  • 5Stoica P,Sharman K. Maximum Likelihood Methods for Di- rection-of-Arrival Estimation [J ]. IEEE Transactions on A- coustics,Speech and Signal Processing, 1990,38 (7): 1132-1143.
  • 6Donoho D L, Compressed S. Technical Report [ M ]. Stanford University, 2004.
  • 7Malioutov D, Cetin M, Willsky A. A Sparse Signal Recon- struction Perspective for DOA Estimation with Sensor Arrays [ J ]. IEEE Transactions on Signal Processing, 2005,53 (8): 3010-3022.
  • 8Yin J H, Chen T Q. Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Covariance Vec- tors [J]. IEEE Transaction on Signal Processing,2011,59 (9): 4489-4493.
  • 9Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001 ( 1 ):211-244.
  • 10贺亚鹏,李洪涛,王克让,朱晓华.基于压缩感知的高分辨DOA估计[J].宇航学报,2011,32(6):1344-1349. 被引量:32

引证文献1

二级引证文献2

;
使用帮助 返回顶部