期刊文献+

多类关联规则生成算法 被引量:2

Multi-class association rule generation algorithm
下载PDF
导出
摘要 针对传统关联规则算法产生的规则关联性弱、种类少的缺点,结合Spearman秩相关系数,提出了一种多类关联算法。该算法在传统算法产生的强规则基础上,利用Spearman秩相关方法计算出规则中产品间的同步异步等相关性。将其作为兴趣度阈值,算法可同时产生同步正规则、异步正规则、同步负规则和异步负规则四类关联规则,且规则间联系紧密。实验结果表明了算法的有效性和优越性。 The association rules generated by traditional algorithms have the shortcomings of few classes and low correlation. Based on the analysis of these shortcomings, and combined with Spearman rank correlation coefficient, a new multi-class association rule algorithm was proposed. Based on the strong association rules generated by traditional algorithms, the new algorithm used Spearman rank correlation to calculate the synchronous and asynchronous correlation coefficient. Setting the correlation coefficient as the interest threshold, the new algorithm can generate synchronous positive rules, contrary positive rules, synchronous negative rules and contrary negative rules. Experiment has been carried out to illustrate the effectiveness and superiority of the algorithm.
作者 曾安平
出处 《计算机应用》 CSCD 北大核心 2012年第8期2198-2201,共4页 journal of Computer Applications
基金 四川省教育厅青年基金资助项目(10ZB049) 宜宾学院科研项目(2011Z15)
关键词 Spearman秩相关系数 多类关联规则 兴趣度 APRIORI算法 Spearman rank correlation coefficient muhi-class association rule interest measure Apriori algorithm
  • 相关文献

参考文献15

二级参考文献60

共引文献150

同被引文献21

  • 1邸书灵,陈娜,马新娜.回归分析在关联规则挖掘中的应用研究[J].微计算机信息,2008,24(3):171-172. 被引量:1
  • 2Xiao Juan, Ye Feng, Xie Yafen, et al. Association rule mining and application in intelligent transportation system [ C ] J/Proceedings of the 27th Chinese Control Confer- ence. Kunming:Beihang University Press,2008.
  • 3Tian Rui, Zhao-sheng Yang, Zhang Mao-lei. Method ot road traffic accidents causes analysis based on data mi- ning [ C ]//Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering. Changchun : IEEE ,2010.
  • 4Lee Wei-Hsun ,Tsenga Shian-Shyong ,Tsaia Sheng-Han. A knowledge based real-time travel time prediction system for urban network [ J ]. Expert Systems with Appli-cations, 2009,36 ( 3 ) :4239-4247.
  • 5Zhou Guo-qing, Wang Lin-bing, Wang Dong, et al. Inte- gration of GIS and data mining technology to enhance the pavement management decision making [ J ]. Journal of Transportation Engineering,2010,136(4) :332-341.
  • 6Chen Shu-yan, Wang Wei, Zuylen van Henk. A compari- son of outlier detection algorithms for ITS data [ J ]. Ex- pert Systems with Applications, 2010,37 ( 2 ) : 1169-1178.
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in Large databases [ C ]//Proceeding of the ACMSIGMOD International Confe- rence on Management of Data ( ACMSIGMOD'93 ). Washington : IEEE, 1993.
  • 8Pawlak Z. Rough sets [ J ]. International Journal of Paral- lel Programming, 1982,11 (5) : 341-356.
  • 9Agrawal R, Srikant R. Fast algorithms for mining associa- tion rules [ C] jj20th International Conference on Very Large Databases. San Francisco : IEEE, 1994.
  • 10谢圣献.数字图书馆中关联检索研究[J].情报杂志,2008,27(1):126-127. 被引量:2

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部