期刊文献+

分段抽样模型中抽中目标的概率分析 被引量:1

Probability analysis of capturing specific objects in stratified sampling model
下载PDF
导出
摘要 为了增大基于种群操作的搜索技术在有限时间内捕捉到决策空间中的特定目标的概率,基于古典概率模型建立不划分的随机抽样模型和划分成多个子区域的随机抽样模型(简称划分模型),分析比较了两个模型分别进行多次独立随机抽样至少抽中1次特定目标的概率,并证明:当总体中特定目标的数量为1或2时,划分模型抽中特定目标的概率恒大于不划分模型的概率。 In order to increase the probability of population-based search approach to capture specific objects from the decision space within limited time, based on the classical probability model, this paper established an overall random sampling model and a partition sampling model inspired by stratified sampling which divided the sample space into more than one subspace. By analyzing and comparing the two random event's probability of obtaining the specific objectives at least one time among repeatedly independent random sampling from those models, the paper proves that the partition sampling model's probability is greater than the overall random sampling model's probability permanently when the amount of specific objective in the collectivity is 1 or 2.
出处 《计算机应用》 CSCD 北大核心 2012年第8期2209-2211,共3页 journal of Computer Applications
基金 教育部新世纪优秀人才支持计划项目(NCET09-0094) 国家科技支撑计划项目(2012BAF12B14) 贵州省科学技术基金资助项目(黔科合J字[2010]2095号 黔科合J字[2011]2196号) 贵阳市科技局科技计划项目(筑科合同[2012101]2-7号) 贵州大学人才引进基金资助项目([2010]001号)
关键词 决策空间划分模型 古典概率模型 随机抽样 分段抽样 均匀分布 decision space partition model classical probability model random sampling stratified sampling uniformdistribution
  • 相关文献

参考文献11

  • 1MASRY E. Random sampling of deterministic signals: statistical analysis of Fourier transforms estimates[J].IEEE Transactions on Signal Processing, 2006, 54(5):1750-1761.
  • 2TOR P, JOURDAIN B. Adaptive optimal allocation in stratified sampling methods[J].Methodology and Computing in Applied Probability,2010, 12(3):335-360.
  • 3AHMAD B I, TARCZYNSKI A. Spectral analysis of stratified sampling: a means to perform efficient multiband spectrum sensing[J].IEEE Transactions on Wireless Communications, 2012,11(1):178-187.
  • 4杨观赐,李琴,李少波,钟勇.重用最大频繁模式的可持续进化算法[J].华南理工大学学报(自然科学版),2011,39(5):115-119. 被引量:1
  • 5GIEL O, LEHRE P K. On the effect of populations in evolutionary multi-objective optimisation[J].Evolutionary Computation, 2010, 18(3): 335-356.
  • 6BUI L T, ABBASS H A, ESSAM D. Localization for solving noisy multi-objective optimization problems[J].Evolutionary Computation, 2009, 17(3): 379-409.
  • 7XING LING-NING, CHEN YING-WU, YANG KE-WEI, et al. A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem[J].Engineering Applications of Artificial Intelligence, 2008, 21(8): 1370-1380.
  • 8XING LING-NING, ROHLFSHAGEN P, CHEN YING-WU, et al. An evolutionary approach to the multidepot capacitated arc routing problem[J].IEEE Transactions on Evolutionary Computation, 2010, 14(3): 356-374.
  • 9XING LING-NING,CHEN YING-WU,WANG PENG,et al. A knowledge-based ant colony optimization for flexible job shop scheduling problems[J].Applied Soft Computing Journal, 2010,10(3): 888-896.
  • 10XING LING-NING, ROHLFSHAGEN P, CHEN YING-WU, et al. A hybrid ant colony optimization algorithm for the extended capacitated arc routing problem[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2011, 41(4): 1110-1123.

二级参考文献13

  • 1黄东,唐俊,汪卫,施伯乐.CuMen:基于最大频繁序列模式的聚类算法及其在基因拼接中的应用[J].计算机科学,2005,32(10):149-153. 被引量:4
  • 2Cheng Ze,Ventura Mario,She Xinwei,et al.A genomewide comparison of recent chimpanzee and human segmen-tal duplications[J].Nature,2005,437 (7055):88-93.
  • 3Hu J,Goodman E,Seo K,et al.The hierarchical fair competition(HFC) framework for sustainable evolutionary algorithms[J].Evolutionary Computation,2005,13 (1):52-67.
  • 4Xie Qingsheng,Xu Lizhang,Li Shaobo.HFCSA:a sustainable simulated annealing algorithm based on HFC model[C] //Proceedings of International Conference on Mechatronics and Automation.Los Alamitos:IEEE Computer Society,2007:3111-3116.
  • 5Sebastian Risi,Sandy Vanderbleek,Charles Hughes,et al.How novelty search escapes the deceptive trap of leaming to learn[C] //Proceedings of the Genetic and Evolutionary ComputatiOn Conference.New York:ACM,2009:1-8.
  • 6Michael Neill,Leonardo Vanneschi,Steven Gustafson,et al.Open issues in genetic programming[J].Genetic Programming and Evolvable Machines,2010,11 (3/4):339-363.
  • 7Rashidi E,Jabandar M,Zandieh M.An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines[J].The International Journal of Advanced Manufacturing Technology,2010,49 (9/10/11/12):1129-1139.
  • 8Lo David,Khoo Siau-cheng,Li Jinyan.Mining and ranking generators of sequential patterns[C] //Proceedings of 8th SIAM International Conference on Data Mining.Philadelphia:SIAM,2008:553-564.
  • 9Lin Jie-ru,Hsieh Chia-ying,Yang Don-lin,et al.A flexible and efficient sequential pattern mining algorithm[J].International Journal of Intelligent Information and Database Systems,2009,3 (3):291-310.
  • 10Marc Plantevit,Anne Laurent,Dominique Lauren,et al.Mining multidimensional and multilevel sequential patterns[J].ACM Transactions on Knowledge Discovery from Data,2010,4(1):1-37.

同被引文献17

  • 1郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 2Deb K. Multi-objective optimization using evolution- ary algorithms: an introduction, 2011003[R]. Kan- pur: Indian Institute of Technology Kanpur, 2011.
  • 3Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Trans on Evolutionary Computation, 2002, 6 (2) : 182-197.
  • 4Zitzler E, Laumanns M, Thiele L. SPEA2: impro- ving the strength pareto evolutionary algorithm[C]// Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Berlin: Springer-Verlag, 2002: 95-100.
  • 5Schutze O, Laumanns M, Tantar E, et al. Compu ting gap free Pareto front approximations with sto chastic search algorithms[J].Evolutionary Computa tion, 2010, 18(1): 65-96.
  • 6Deb K, Koksalan M. Guest editorial special issue on preference-based multi-objective evolutionary algo- rithms[J]. IEEE Trans on Evolutionary Computa- tion, 2010, 14(5): 669-670.
  • 7Shir O M, Emmerieh M, Back T. Adaptive niche ra dii and niche shapes approaches for niching with the CMA-ES[J]. Evolutionary Computation, 2010, 18 (1) : 97-126.
  • 8Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 9Kukkonen S, Lampinen J. GDE3: the third evolu tion step of generalized differential evolution[C]// Proc of the 2005 Congress on Evolutionary Compu- tation. Edinburgh: IEEE Service Center, 2005: 443-450.
  • 10Li B B, Wang L. A hybrid quantum inspired genetic algorithm for muhiobjective flow shop scheduling [J]. IEEE Trans on Optimization Systems, Man, and Cybernetics: Part B, 2007, 37(3): 576-591.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部