期刊文献+

模糊支持张量机图像分类算法及其应用 被引量:2

Research and application of fuzzy tensor machine image classification algorithm
下载PDF
导出
摘要 针对在小样本图像分类应用中,以向量空间作为输入的传统分类算法的不足,提出以张量理论为基础,结合模糊支持向量机思想的基于张量图像样本的模糊支持张量机分类器,利用张量表示图像样本,求解最优张量面。通过手写体数字图像样本实验仿真,验证该算法的性能,随后将其应用到羽绒菱节图像识别中进行对比,该算法较传统算法平均高出6.3%以上的识别率。实验证明该算法更适合应用于图像样本分类识别。 In small sample image classification application, most of traditional classification models take vectors as inputs, which may cause many defects and influence the classification performance. In this paper, the classifier of Fuzzy Support Tensor Machine (FSTM) based on tensor theory and fuzzy support vector machine was proposed. This algorithm took tensors as inputs to obtain the optimal tensor plane. After verifying the performance of the algorithm by using handwritten digital image database, FSTM was applied to triangle node of feather and down category recognition. Compared with the traditional algorithms, FSTM achieves approximately 6.3% increase in correct recognition rate on average. The experimental results show that the FSTM classifier is much more suitable for the application of image classification.
出处 《计算机应用》 CSCD 北大核心 2012年第8期2227-2229,2234,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60975027)
关键词 模糊支持张量机 张量图像 图像分类 羽绒识别 Fuzzy Support Tensor Machine (FSTM) tensor image image classification feather and down categoryrecognition
  • 相关文献

参考文献10

  • 1CORTES C, VAPNIK V. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 2LIN CHUN-FU, WANG SHENG-DE. Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 3HU RONG-XIANG, JIA WEI, HUANG DE-SHUANG, et al. Maximum margin criterion with tensor representation[J].Neurocomputing, 2010, 73(10/11/12): 1541-1549.
  • 4BOURENNANE S, FOSSATI C, CAILLY A. Improvement of classification for hyperspectral images based on tensor modeling[J].Geoscience and Remote Sensing Letters, 2010, 7(4): 801-805.
  • 5刘铭,俞能海,李卫海,周浩.基于张量分解的数字图像取证[J].计算机工程,2011,37(8):225-227. 被引量:1
  • 6GUO WEIWEI, KOTSIA I, PATRAS I. Tensor learning for regression[J].IEEE Transactions on Image Processing, 2011, 21(2): 816-827.
  • 7吴飞,刘亚楠,庄越挺.基于张量表示的直推式多模态视频语义概念检测[J].软件学报,2008,19(11):2853-2868. 被引量:10
  • 8ZHANG LEFEI, ZHANG LIANGPEI, TAO DACHENG, et al. A multifeature tensor for remote-sensing target recognition[J].Geoscience and Remote Sensing Letters, 2011, 8(2): 374-378.
  • 9LIU YANG, LIU YAN, CHAN K C C. Tensor-based locally maximum margin classifier for image and video classification[J].Computer Vision and Image Understanding, 2011, 115(3): 300-309.
  • 10FU YUN, HUANG T S. Image classification using correlation tensor analysis[J].IEEE Transactions on Image Processing, 2008, 17(2): 226-234.

二级参考文献9

  • 1Choi K S, Lam E Y, Wong K K Y. Source Camera Identification Using Footprints from Lens Aberration[C]//Proceedings of the International Society for Optical Engineering. Bellingham, USA: [s. n.], 2006: 172-179.
  • 2Filler T, Fridrich J, Goljan M. Using Sensor Pattern Noise for Camera Model ldentification[C]//Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, California, USA: IEEE Press, 2008:1296-1299.
  • 3Bayram S, Sencar H T, Memon N, et al. Source Camera Identification Based on CFA Interpolation[C]//Procccdings of the 12th IEEE International Conference on hnage Processing. Genoa, Italy: IEEE Press, 2005: 69-72.
  • 4Long Yangjing, Huang Yizhen. hnage-based Source Camera Identification Using Demosaicking[C]//Proceedings of the 8th International Workshop on Multimedia Signal Processing. Victoria, Canada: [s. n.], 2006: 419-424.
  • 5Lindeberg T. Scale-space Theory in Computer Vision[M]. Stockholm, Sweden: Kluwer Academic Publishers, 1994:31-60.
  • 6Kolda T G, Bader B W. Tensor Decompositions and Applications[J]. SIAM Review, 2009, 51(3): 455-500.
  • 7张鸿,吴飞,庄越挺,陈建勋.一种基于内容相关性的跨媒体检索方法[J].计算机学报,2008,31(5):820-826. 被引量:34
  • 8李景辉,张晓峰,马燕.纹理合成在图像修复中的应用研究[J].计算机工程,2009,35(7):206-208. 被引量:9
  • 9陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88

共引文献9

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部