期刊文献+

基于多级纹理频谱特征与PCA的人脸识别算法 被引量:2

Face recognition algorithm based on multi-level texture spectrum features and PCA
下载PDF
导出
摘要 针对主成分分析(PCA)算法在人脸识别中识别率低的问题,提出一种图像纹理频谱特征与PCA相结合的人脸识别算法。该算法利用纹理单元算子提取人脸图像纹理频谱特征,然后用PCA对所提取的特征降维,最后利用最近邻(KNN)分类器进行人脸识别。在ORL人脸库和Yale人脸库上对所提出的算法进行了测试,识别率均高于PCA、模块化二维PCA(M2DPCA)等方法,分别为96.5%和95%。实验结果表明了该算法的有效性和准确性。 To improve the recognition rate of Principal Component Analysis (PCA) algorithm in face recognition, a new algorithm combining the image texture spectrum feature with PCA was proposed. Firstly, the texture unit operator was used to extract the texture spectrum feature of the face image. Secondly, PCA approach was used to reduce the dimensions of the texture spectrum feature. Finally, K-Nearest Neighbor (KNN) classification was chosen to recognize the face. ORL and Yale face database were used to test the proposed algorithm, and the recognition accuracies were 96.5% and 95% respectively, which were higher than those of PCA and Modular Two-Dimensional PCA ( M2DPCA). The experimental results demonstrate the efficiency and accuracy of the proposed algorithm.
出处 《计算机应用》 CSCD 北大核心 2012年第8期2316-2319,共4页 journal of Computer Applications
基金 中央高校基本科研业务专项资金资助项目(YX2011-28) 国家973计划项目(2009CB421105)
关键词 人脸识别 图像纹理频谱 纹理单元 主成分分析 K最近邻分类器 face recognition image texture spectrum texture unit Principal Component Analysis (PCA) K-NearestNeighbor (KNN) classification
  • 相关文献

参考文献16

  • 1薛冰,郭晓松,蒲鹏程.人脸识别技术综述[J].四川兵工学报,2010,31(7):119-121. 被引量:15
  • 2SAMAIA F.Face recognition using hidden Markov models[D]. Cambridge: University of Cambridge,1994.
  • 3张练兴,罗烈.置信度判别嵌入式隐马尔可夫模型人脸识别[J].计算机应用研究,2010,27(5):1987-1990. 被引量:2
  • 4SIGARI M H. Best wavelength selection for Gabor wavelet using GA for EBGM algorithm[C]// ICMV 2007: International Conference on Machine Vision. Piscataway: IEEE, 2007:35-39.
  • 5KIRBY M, SIROVICH L. Application of the Karhunen-Loeve procedure for the characterization of human faces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1):103-108.
  • 6NICHOLL P, AMIRA A. DWT/PCA face recognition using automatic coefficient selection[C]// Proceedings of the 4th IEEE International Workshop on Electronic Design. Washington, DC: IEEE Computer Society, 2008:390-393.
  • 7ZHU YULIAN, LIU JUN, CHEN SONGCAN. Semi-random subspace method for face recognition[J].Image and Vision Computing, 2009, 27(9):1358-1370.
  • 8HYVRINEN A, KARHUNEN J, OJA E. Independent component analysis[M]. New York: John Wiley and Sons, 2001:147-164.
  • 9黄璞,陈才扣.基于局部人脸图像的ICA人脸识别方法[J].计算机工程与设计,2010,31(11):2550-2553. 被引量:9
  • 10HE D-C, WANG L. Texture Unit, texture spectrum, and texture analysis[J].IEEE Transactions on Geoscience and Remote Sensing,1990, 28(1): 509-513.

二级参考文献54

共引文献51

同被引文献13

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 3MOORE A W, PAPAGIANNAKI K. Toward the accurate identifica- tion of network applications [ C]// Proceedings of the 2005 Passive and Active Measurement Workshop. Berlin: Springer, 2005: 41- 54.
  • 4NGUYEN T T T, ARMITAGE G. A survey of techniques for Inter- net traffic classification using machine learning [ J]. IEEE Commu- nications Surveys & Tutorials, 2008, 10(4): 56 -76.
  • 5WILLIAMS N, ZANDER S, ARMITAGE G. A preliminary perform- ance comparison of five machine learning algorithms for practical IP traffic flow classification [ J]. SIGCOMM Computer Communication Review, 2006, 36(5):5-16.
  • 6RODRIGUEZ J J, KUNCHEVA L I, ALONSO C J. Rotation forest: a new classifier ensemble method [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10) : 1619 - 1630.
  • 7BIHLMANN P L. Bagging, subagging and bragging for improving some prediction algorithms [ M]// Recent Advances and Trends in Nonparametric Statistics. Amsterdam: Elsevier, 2003:19-34.
  • 8MARTNEZ-MUNOZ G, HERNJNDEZ-LOBATO D, SUAREZ A. An analysis of ensemble pruning techniques based on ordered ag- gregation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 245-259.
  • 9WITFEN I H, FRANK E. Data mining: practical machine learning tools and techniques [ M]. 2nd ed. San Francisco: Morgan Kauf- mann Publishers, 2005:122 - 173.
  • 10宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. 被引量:73

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部