期刊文献+

基于统计CPG岛的基因预测方法 被引量:2

The Gene Prediction Method Based on the Statistics of the CPG Islands
原文传递
导出
摘要 随着以功能基因组学和蛋白质组学为主要研究内容的后基因组时代的来临,人们面对着生物信息的数据呈指数增长,如何通过有效的计算方法由核酸和蛋白质的序列推导出它们的结构和功能,特别是识别DNA序列中编码蛋白质的基因预测问题是迫切需要解决的研究课题之一.本文在CpG岛对研究基因编码的特殊生物意义下,通过三种方法确定CpG岛的位置,并在此基础上,结合一种新的DNA序列字母向量,利用信息熵离散量预测基因序列,提高了识别基因编码的效率,而且计算的时间有显著的减少. As the coming of the post genome era with functional genomlcs anO proteomms as the main research contents, people must face the biological information data growing exponentially, through the effectively calculation method using the nucleic acid and protein sequence derive the structure and function of them, especially the sequence of DNA identification in the genes encoding them prediction problem is urgent to one of the research project.This paper under the study genetic code of special biological sense of CpG island, determines the three methods to determine the position of the CpG island and on this basis, combining with a new DNA sequence letters vector, Uses the information entropy discrete quantity prediction gene sequence, improve the efficiency of the gene encoding the recognition, and the time of the calculation have significantly reduced.
出处 《生物数学学报》 CSCD 2012年第2期342-348,共7页 Journal of Biomathematics
基金 国家自然科学基金资助项目(10871084) 江南大学理学院青年基金资助项目(20060928)
关键词 HMM CPG岛 DNA编码 离散量 CpG islands HMM DNA coding Divergence
  • 相关文献

参考文献10

二级参考文献34

  • 1孟捷,陈滔,刘次全,彭守礼,胡光涛,杨自天,张许生,陈中轩,陈琳,王运祥,曾健,张静.蛋白质编码区与非编码区的特征与识别[J].生物数学学报,1996,11(2):75-82. 被引量:3
  • 2Nick Goldman, Salzberg Searl. Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses[J]. J Mol Biol, 1996, 263(1): 196-208.
  • 3Rabiner N R. A tutorian on hidden Markov models and selected applications in speech recognition[J]. Proc IEEE, 1989, 77(2):257-286.
  • 4Anders Kroth, Lareo Roos. Hidden markov models in computational biology applications to protein modeling[J].J Mol Biol, 1994, 235(4): 1501-1531.
  • 5Anders Kroth, Lareo Roos. A hidden markov model that finds genes in E.coli DNA[J]. Nucl Acids Res,1994,22 (3):4768-4778.
  • 6Kneller D G, Choen F E, Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network[J]. J Mol Biol, 1990, 214(4):171-182.
  • 7杨文强 邓明华 钱敏平.隐马尔可夫模型与剪切位点识别[A]..中国运筹学会第六届学术交流会论文集[C].GlobalLink出版社,2000.869-873.
  • 8Jiang C, Zeng Z-B. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics, 1995,140(3):1111-1127.
  • 9Kao CH,and Z-B Zeng. General Formulas for Obtaining the MLEs and the Asymptotic variancecovariance matrix in mapping quantitative trait loci when using the EM algorithm [J]. Biometrics, 1997, 53(3):653-665.
  • 10Knapp S J, Bridges W C Jr, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps[J]. Theor Appl Genet, 1990, 79(3):583-592.

共引文献13

同被引文献29

  • 1吕军,罗辽复.人类polⅡ启动子的识别[J].生物化学与生物物理进展,2005,32(12):1185-1191. 被引量:26
  • 2孙红卫,翁洋,朱允民.基因预测准确性的度量标准分析[J].四川大学学报(自然科学版),2006,43(3):649-654. 被引量:2
  • 3林昊,李前忠.基于二次判别的果蝇启动子识别[J].生物物理学报,2006,22(5):345-350. 被引量:7
  • 4童庆,郑浩然,王煦法.基于统计组合与特征分类的基因预测算法[J].中国科学技术大学学报,2006,36(11):1184-1189. 被引量:2
  • 5Bird AP.CpG islands as gene markers in the vertebrate nucleus[J].Trends in Genetics,1987,3:342-347.
  • 6Jones PA,Takai D.The role of DNA methylation in mammalian epigenetics[J].Science,2001,293(5532): 1068-1070.
  • 7Feil R,Khosla S.Genomic imprinting in mammals:an interplay between chromatin and DNA methylation[J]. Trends Genet,1999,15(11):431-435.
  • 8Reik W,Santos F,Dean W.Mammalian epigenomics:reprogramming the genome for development and therapy[J].Theriogenology,2003,59(1):21-32.
  • 9Bird A.DNA methylation patterns and epigenetic memory[J].Genes & development,2002,16(1):6-21.
  • 10Grunau C,Renault E,Rosenthal A,et al.MethDB—a public database for DNA methylation data[J].Nucleic Acids Research,2001,29(1):270-274.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部