摘要
给出协变量带有不可忽略缺失数据的非线性再生散度模型的Bayes方法,缺失数据机制由Logistic回归模型来确定.Gibbs抽样技术和Metropolis-Hastings算法(简称MH算法)用来得到模型参数、缺失数据机制中回归系数的联合Bayes估计,并用实例加以说明.
Bayesian method is developed to analyze nonlinear reproductive dispersion mod-els in which the covariate variables may be missing with nonignorable missingness mechanism. The missingness is specified by a logistic regression model.the Gibbs sampler and the MH algorithm is used to obtain the joint Bayesian estimates of parameters.A real example are used to illustrate the methodology.
出处
《生物数学学报》
CSCD
2012年第2期357-364,共8页
Journal of Biomathematics
基金
国家自然科学基金资助项目(10961026)
云南省教育厅科研基金资助项目(06Y046F)
院级科研骨干专项资助项目(05YJGG12)