期刊文献+

基于标准编码的有向标记频繁子图挖掘算法

Digraph Labeled Frequent Subgraph Mining Algorithm Based on Canonical Code
下载PDF
导出
摘要 针对大部分频繁子图挖掘算法,基于无向图而不适用于更具有实际意义的有向图的挖掘的现状,通过对无向图挖掘算法gSpan中编码结构的扩展,采用改进的规范形式,使编码适用于有向图领域。并使用针对有向图的DADI++存储结构来存储图集,简化了数据访问操作的代价。另外在挖掘中使用Hash表存储同构图的Hash地址和支持度,避免对图集的重复扫描和直接的同构测试。在实际数据集上运行的实验结果表明提出的Dspan算法是正确的,并比FFSM算法效率更高。 For most of the frequent subgraph mining algorithms are based on the undirected graphs and areun- suitable for the more meaningful study on directed graphs, through the expansion of the gSpan code structure, the improved canonical form made the code apply to the directed graphs. It simplified the cost of data access operations by using the DADI ++ storage structure. It stored the Hash address and supporting in the Hash table without scan- ning the graph repeatedly and avoided the direct isomorphism testing in the mining. The experimental result on real datasets show the new proposed algorithm Dspan is correct and better than FFSM in efficiency of mining.
出处 《科学技术与工程》 北大核心 2012年第20期5060-5065,共6页 Science Technology and Engineering
关键词 有向图挖掘 频繁子图 子图同构 标准编码 DADI++ digraph mining the frequent subgraph subgraph isomorphism canonical code DA- DI ++
  • 相关文献

参考文献9

  • 1Inokuchi A, Washio T, Motoda H. An apriori-based algorithm for min- ing frequent substructures from graph data. Proe 2000 European Symp Principle of Data Mining and Knowledge Discovery. Lyon, France: Springer-Verlag, 2000 : 13-23.
  • 2Kuramochi M, Karypis G. Frequent subgraph discovery. Proc 2001 Int Conf Data Mining. San Jose, California, USA: Springer-Verlag, 2001:313-320.
  • 3Ehud G, Shimony S E, Natalia V. Discovering frequent graph pat- terns using disjoint paths. IEEE Transactions on Knowledge and Data Engineering, 2006 ; 18 ( 11 ) : 1441-1456.
  • 4Yan X, Han J. gSpan: gTaph-based substructure pattern mining. In Proc. 2002 Int: Conf Data Mining. Maebashi City, Japan: IEEE, 2002 : 721 -724.
  • 5Huan J, Wang W, Prins J. Efficient mining of frequent subgraph in the presence of isomorphism Proc 2003 Int Conf Data Mining. Mel- bourne, Florida USA : IEEE, 2003 : 549-552.
  • 6Tzvetkov P, Yan X, Han J. TSP: mining top-K closed sequential patterns. Proceedings of the Third IEEE International Conference on Data Mining, Nov. 2003:347-354.
  • 7Zeng Z P, Wang J Y, Zhang J. FOGGER: an algorithm for graph generator discovery. EDBT/ICDT 2009 Joint Conference, Saint-Pe- tersburg Russia, 2009:517-528.
  • 8薛冰,张俊峰,郑超.基于分割图集的频繁闭图挖掘算法[J].计算机应用研究,2011,28(1):61-64. 被引量:3
  • 9卢云彬,曹汉强.基于Hash表的关联规则挖掘算法的改进[J].计算机技术与发展,2007,17(6):12-14. 被引量:10

二级参考文献12

  • 1卢云彬,曹汉强.基于Hash表的关联规则挖掘算法的改进[J].计算机技术与发展,2007,17(6):12-14. 被引量:10
  • 2YAN X,HAN J.CloseGraph:mining closed frequent graph patterns[C]//Proc of SIGKDD’03.New York:ACM Press,2003:286-295.
  • 3NGUYEN S N,ORLOWSKA M E,LI Xue.Graph mining based on a data partitioning approach[C]//Proc of the 19th Australasian Database Conference.[S.l.]:Australian Computer Society Press,2008:31-37.
  • 4YAN X,HAN J.gSpan:graph-based substructure pattern mining[C]//Proc of the 2nd IEEE International Conference on Data Mining.Washington DC:IEEE Computer Society,2002:721.
  • 5NIJSSEN S, KOK J.A quickstart in frequent structure mining can make a difference[C]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2004: 647-652.
  • 6HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 7Agrawal R,Imielinski T,Swami A.Database mining:a performance perspective[J].Knowledge and Data Engineering,IEEE Transactions,1993,5(6):914-925.
  • 8Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[J].ACM SIGMOD Record,1993,22(2):207-216.
  • 9Park Jong Soo,Chen Ming-Syan,Yu P S.Using a Hash -Based Method with Transaction Trimming for Mining Association Rules[J].Knowledge and Data Engineering,IEEE Transactions,1997,9(5):813-825.
  • 10Holt J D,Chung S M.Efficient mining of association rules in text databases[C]//Proceedings of the eighth international conference on Information and knowledge management.[s.l.]:ACM Press,1999:234-242.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部