期刊文献+

结构先验约束的动态PET图像重建

Dynamic PET image reconstruction with Geometrical structure prior constraints
下载PDF
导出
摘要 为提高图像质量,提出一种利用其他高质量解剖模板作为先验,引导动态正电子发射断层(PET)成像重建的方法.该方法基于状态空间理论体系,将与生理特性相关的解剖模板耦合于状态方程中,并与成像模型相结合构成完善的状态空间方程组,运用具有鲁棒性的H∞滤波法求解,从而构建一种适合于符合计数率低、噪声影响显著的动态PET图像的重建框架.蒙特卡洛模拟实验结果表明,与其他传统方法相比,本方法在能够适应实际动态PET成像中统计特性和系统特性不确定的基础上,进一步抑制了噪声,并保持了图像边缘和细节信息. In order to improve the image quality,an improved algorithm for dynamic positron emission tomography(PET) image reconstruction was proposed by using segmented anatomical template that provided by other high quality imaging technology.Based on state space theory,a dynamic PET image reconstruction framework for low count rate and high noise environment was formulated with the observation equation of detectors and a modified evolution equation incorporating structural constraint which was generated to guide the reconstruction process,and H∞ filtering principle was employed to solve the above two equations.Compared with other algorithms,experiments conducted by Monte Carlo simulations indicate a persuasive assessment that the proposed strategy was particularly applicable for real-world situations with the uncertainties of system and statistical properties,suppresses noise well,while the boundary information and other details remain clear.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期961-966,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2010CB732504) 浙江省科技计划资助项目(2010C33026)
关键词 正电子发射断层 图像重建 动态成像 状态空间体系 解剖模板 结构约束 positron emission tomography image reconstruction dynamic imaging state space system anatomical template structural constraint
  • 相关文献

参考文献16

  • 1LEAHY R M, QI J. Statistical approaches in quantita- tive positron emission tomography [J]. Statistics and Computing. 2000, 102): 147- 165.
  • 2ZHOU Z, LEAHY R M, MUMCUOGLU E U. A comparative study of the effects of using anatomical pri- ors in PET reconstruction[C]//Proceedings of The 1993IEEE Nuclear Science Symposium and Medical Imaging Conference. [-S. 1.]:IEEE, 1993:1749 - 1753.
  • 3BOWSHER J E, JOHNSON V E, TURKINGTON T G, et al. Bayesian reconstruction and use of anatomical a priori information for emission tomography [J]. IEEE Transactions on Medical Imaging, 1996, 15(5) : 673 - 686.
  • 4RANGARAJAN A, HSIAO I T, GINDI G. A Bayesian joint mixture framework for the integration of anatomi- cal information in functional image reconstruction[J]. Journal of Mathematical Imaging and Vision, 2000, 12 (3) :199 - 217.
  • 5JING T, ARMAN R. Bayesian PET image reconstruc- tion incorporating anato-functional joint entropy[J]. Physics in Medicine and Biology, 2009, 54 (23): 7063 - 7075.
  • 6AMEYA A, KATHLEEN V, KRISTOF B,et al. Eval- uation of different MRI-based anatomical priors for PET brain imaging[C]// Nuclear Science Symposium Confer- ence Record NSS/MIC), 2009 IEEE. Orlando, FI:. IEEE, 2009, 2774- 2780.
  • 7COBELLI C, FOSTER D, TOFFOLO G. Tracer kinet- ics in biomedical research [M]. New York :Kluwer Aca- demic/Plenum Publishers, 2000.
  • 8LIU H, TIAN Y, SHI P. PET image reconstruction: a robust state space approach [C]// Information Process- ing in Medical Imaging IPMI'05).[S. 1. ]: Springer, 2005:197 - 209.
  • 9HOETJES N J, VAN VELDEN P H P, HOEKST-RA O S, et al. Partial volume correction strategies for quan- titative FDG PET in oncology[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37 ( 9 ) : 1679 - 1687.
  • 10VAN LEEMPUT K, MAES F, VANDERMEULEN D, et al. Automated model-based tissue classication of MR images of the brain [J]. IEEE Transactions on Medical Imaging, 1999, 18(10): 1162-1175.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部