期刊文献+

基于直推式支持向量机的协商决策模型 被引量:5

Negotiation decision model based on transductive support vector machine
下载PDF
导出
摘要 为了解决在电子商务活动中由于信息的保密性协商参与者无法获得对手效用函数,进而影响双方协商性能的问题,提出一种基于直推式支持向量机(TSVM)算法的双边多议题协商决策模型.该模型利用协商历史中隐含的信息,分析协商过程中产生的建议是否落在对手效用可接受区间内,构造有标记和无标记的训练样本,并通过直推式支持向量机来学习这些训练样本,得到协商对手效用函数的估计,然后与己方效用函数相结合构成一个约束优化问题,利用粒子群算法求解此优化问题得到己方的最优反建议.实验结果表明:此模型在信息保密和缺乏先验知识的情况下,能够兼顾对手效用做出协商决策,增加了双方的协商成功率和联合效用值,并能够有效减少协商时间. The confidentiality of information in e-commerce activities leads to negotiation participants are unable to get the opponent's utility function,thereby affecting the negotiation performance.To solve this,a bilateral and multi-issue negotiation model based on transductive support vector machine(TSVM-NM) was proposed.In this model,the proposals generated in the procedure of negotiation are stored in negotiation history database.The model constructs labeled data and unlabeled data by making full use of the implicit information in negotiation history and analyzing that whether those proposals fall in opponent's acceptable utility zone.Those data become the training samples of TSVM.Then the estimation of opponent's utility function was obtained by learning the training samples.With the combination of self's utility function and the estimation of opponent's utility function,a constrained optimization problem is formed,which is to be resolved by particle swarm optimization(PSO).The optimal solution is the self's counter-offer.Experimental results show that this model can shorten the negotiation time and increase both the success rate of negotiation and the joint utility,in the environments where information is private and the prior knowledge is not available.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期967-973,994,共8页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2007AA01Z187) 国家自然科学基金资助项目(60775029) 浙江省自然科学基金资助项目(Y1100036) 浙江省教育厅科研计划资助项目(Y201016929)
关键词 电子商务 多AGENT系统 协商决策模型 直推式支持向量机 粒子群优化算法 e-commerce multi-agent system negotiation decision model TSVM particle swarm optimization algorithm
  • 相关文献

参考文献12

  • 1JENNINGS N R, FARATIN P, LOMUSCIO A R. Au- tomated negotiation: prospects, methods and challenges [J]. International Journal of Group Decision and Negotia- tion, 2001, 10(2) : 199 - 215.
  • 2ZENG D J, SYCARA K. Bayesian learning in negotia- tion [J]. International Journal of Human-Computer Stud- ies, 1998, 48(1): 125-141.
  • 3COEHOORN R M, JENNINGS N R. Learning an op- ponent's preferences to make effective multi-issue nego- tiation trade-offs [C] // Proceedings of the 6th Interna- tional Conference on E-Commerce. New York: ACM, 2004: 59-68.
  • 4王黎明,黄厚宽,柴玉梅.基于信任和K臂赌博机问题选择多问题协商对象[J].软件学报,2006,17(12):2537-2546. 被引量:14
  • 5高坚,张伟.多Agent系统中双边多指标自动协商的ACEA算法[J].计算机研究与发展,2006,43(6):1104-1108. 被引量:6
  • 6程昱,高济,古华茂,傅朝阳.基于机器学习的自动协商决策模型[J].软件学报,2009,20(8):2160-2169. 被引量:17
  • 7GAMMERMAN A, VAPNIK V, VOWK V. Learning by transduction [C]// Proceedings of the 14th Confer- ence on Uncertainty in Artificial Intelligence. Wisconsin: IEEE, 1998:148-156.
  • 8JOACHIMS T. Transductive inference for text classifi- cation using support vector machines [C] /// Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann, 1999: 200 - 209.
  • 9陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 10KENNEDY J, EBERTHART R. Particle swarm opti- mization [C] // Proceedings IEEE International Confer- ence on Neural Networks. Piscataway: IEEE, 1995: 1942 - 1948.

二级参考文献29

共引文献150

同被引文献36

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部