期刊文献+

微/纳米定位平台的桥式机构静、动态优化设计 被引量:6

Static and dynamic optimal design of bridge-type mechanism of micro/nano-positioning platform
下载PDF
导出
摘要 为了解决桥式机构静态性能与动态性能相互制约问题,应用伪刚体模型法,建立桥式机构的静、动力学模型,分析表明:柔性板簧厚度越小、长度越长,桥式机构的静态性能越好,但动态性能就越差;动态性能主要受柔性板簧厚度影响,板簧长度对其影响不大.为了优化桥式机构的静、动态性能,建立该机构总性能的优化模型,并对柔性板簧厚度、长度等几何特征参数进行了优化设计.应用ANSYS,对优化前、后的机构进行了仿真分析,并对机构的静、动态性能进行了试验,结果表明:优化后机构的稳态时间减小为0.032s,比优化前ANSYS仿真缩短了80%,微位移输出减小了40.2%,优化后机构总性能达340.75mm·Hz,比优化前ANSYS仿真提高了74.53%. In order to solve the restriction between static and dynamic performances,static and dynamic models were set up by using pseudo-rigid-body and the effect of geometric parameters on the static and dynamic performances was analyzed.As a result,the smaller the thickness and the longer the length of flexure hinge are,the better the static performance of the bridge-type mechanism will be,while the dynamic performance goes worse.The dynamic performance is mainly affected by the thickness of flexure hinge,while much less by the length.An optimization model of overall performance of bridge-type mechanism was established,and the thickness,length and other geometric parameters were optimized.In terms of ANSYS,the performances of the mechanism before and after optimization were simulated,and its static and dynamic performances were tested.Experimental results indicated that the stable time after optimization was decreased to 0.032 s,80% shorter than before optimization,the displacement output decreased by 40.2%,while the overall performance increased to 340.75 mm·Hz,increased by 74.53% than before optimization.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期1067-1073,1081,共8页 Journal of Zhejiang University:Engineering Science
基金 重庆大学机械传动国家重点实验室自主资助项目(0301002109150) 重庆大学机械传动国家重点实验室2008年度开放基金资助项目(SKLMT-KFKT-200806)
关键词 桥式机构 柔性板簧 压电陶瓷驱动器 参数优化 bridge-type mechanism flexure leaf piezoelectric actuator parameter optimization
  • 相关文献

参考文献15

  • 1WANG H, ZHANG X M. optimal design of a 3-DOF stage[J]. Mechanism and (4) : 400 - 410. Input coupling analysis and compliant micro-positioning Machine Theory, 2008, 43.
  • 2GAO P, SWEI S, YUAN Z. New piezoelectric precision micropositioning stage utilizing flexure hinges[J]. Nano- technology, 1999, 10 (4) : 394 - 398.
  • 3TANGXY, CHENIM, LIQ, etal. Design and non linear modeling of a large-displacement XYZ flexure par allel mechanism with decoupled kinematic structure[J]. Scientific Instruments, 2006, 77 (11): 1- 11.
  • 4DONG W, SUN L N, DU Z J, et al. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints[J]. Precision Engineering, 2008, 32(3) : 222 - 231.
  • 5DONG J Y, YAO Q,'PLACID M F, et al. Dynamics, control and performance analysis of a novel parallel-kine- matics mechanism for integrated, multi-axis nano-posi- tioning[J]. Precision Engineering. 2008,32 20 - 33.
  • 6魏强,张玉林,宋会英,郝慧娟.扫描隧道显微镜精密工作台及其控制技术研究[J].中国机械工程,2007,18(2):193-197. 被引量:11
  • 7马立,荣伟彬,孙立宁,龚振邦.面向光学精密装配的微操作机器人[J].机械工程学报,2009,45(2):280-287. 被引量:11
  • 8YUYQ, HOWELL L L, LUSK C P, et al. Dynamic modeling of compliant mechanisms based on the pseudo- rigid-body model [J]. Journal of Mechanical Design, 2005, 127(4): 760-765.
  • 9KE Y, GUO T, LI J. A new-style, slotted-cymbal trans- ducer with large displacement and high energy transmission [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51 : 1171 - 1177.
  • 10MA H W, YAO S M, WAMG L Q, et al. Analysis of the displacement amplification ratio of bridge type flex- ure hinge[J]. Sensors and Actuators, 2006, A 132: 730 - 736.

二级参考文献35

共引文献50

同被引文献66

  • 1杨建新,汪劲松,郁鼎文.空间并联机构运动学与动力学逆解的模块化计算方法[J].机械工程学报,2005,41(5):104-107. 被引量:16
  • 2宗光华,贾明,毕树生,徐一村.扑翼式微型飞行器的升力测量与分析[J].机械工程学报,2005,41(8):120-124. 被引量:19
  • 3王兴松,王湘江,毛燕.基于超磁致伸缩材料的折弯型压曲放大机构设计、分析与控制[J].机械工程学报,2007,43(11):27-33. 被引量:7
  • 4GAO P, SWEI S M, YUAN ZH J. A new piezodriv- en precision micropositioning stage utilizing flexure hinges [ J ]. Nanotechnology, 1999, 10 ( 4 ) : 394 -398.
  • 5LALANDE F, CHAUDHRY Z, ROGERS C. A simplified geometrically nonlinear approach to the analysis of the moonie actuator [ J]. IEEE Transactions on Ultrasonics, Ferroelectries and Frequency Control, 1995,42 ( 1 ) :21-27.
  • 6HYER M W,JILANI A B. Deformation characteristics of circular RAINBOW actuators [ J ]. Smart Materials and Structures ,2002,11 (2) : 175-195.
  • 7CHEN CH M,HSU Y CH,FUNG R F. System identifica- tion of a Seott-Russell amplifying mechanism with offset driven by a piezoeleetrle actuator[ J ]. Applied Mathemat- ical Modeling.2012.36(6) :2788-2802.
  • 8LOBONTIU N, GARCIA E. Analytical model of displace- ment amplification and stiffness optimization for a class of flexure-based compliant mechanisms [ J ]. Computers and Structures,2003,81 (32) :2797-2810.
  • 9XU Q S, LI Y M. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[ J]. Mechanism and Machine Theory, 2011,46 ( 2 ) : 183-200.
  • 10KIM J H, KIM S H, KWAKA Y K. Development of a pi- ezoelectric actuator using a three-dimensional bridge-type hinge mechanism [ J ]. Review of Scientific Instruments, 2003,74(5 ) :2918-2924.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部