期刊文献+

ON THE LOWER BOUND FOR A CLASS OF HARMONIC FUNCTIONS IN THE HALF SPACE 被引量:4

ON THE LOWER BOUND FOR A CLASS OF HARMONIC FUNCTIONS IN THE HALF SPACE
下载PDF
导出
摘要 The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna's representation for harmonic functions in the half sphere by using HSrmander's theorem. The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna's representation for harmonic functions in the half sphere by using HSrmander's theorem.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第4期1487-1494,共8页 数学物理学报(B辑英文版)
基金 Project supported by the Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (IHLB201008257) Scientific Research Common Program of Beijing Municipal Commission of Education (KM200810011005) PHR (IHLB 201102) research grant of University of Macao MYRG142(Y1-L2)-FST111-KKI
关键词 harmonic function Carleman's formula Nevanlinna's representation for halfsphere lower bound harmonic function Carleman's formula Nevanlinna's representation for halfsphere lower bound
  • 相关文献

参考文献10

  • 1Levin B Y. Lectures on Entire Functions. Transl Math Monographs, Vol 150. Providence, RI: Amer Math Soc, 1996.
  • 2Krasichkov-Ternovskii I F. An estimate for the subharmonic difference of subharmonic functions I. Mat Sb, 1977, 102(2): 216-247; II. Mat Sb, 1977, 103(1): 69-111; English Transl in Math USSR-Sb, 1977, 32: 191-218.
  • 3Nikol'skii N K. Selected Problems of the Weighted Approximation and of Spectral Analysis. Trudy Mat Inst Steklov Inst Steklov, 1974, 120; English transl in Proc Steklov Inst Math, 1976, 120.
  • 4Matsaev V I, Mogulskii E Z, Adivision theorem for analytic functions with a given majorant, and some of its applications. Zap Nauchn Sem Leningrad Otdel Mat Inst Steklov (LOMI), 1976, 56: 73-89; English transl in J Soviet Math, 1980, 58.
  • 5Hormander L. Notions of Convexity. Boston, Basel, Berlin: Birkhauser, 1994.
  • 6Stein E M. Harmonic Analysis. Princeton, N J: Princeton University Press, 1993.
  • 7Axler S, Bourdon P, Ramey W. Harmonic Function Theory Second Edition. New York: Springer-Verlag, 1992.
  • 8Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001.
  • 9Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Space. Princeton, N J: Princeton Univ Press, 1971.
  • 10Deng G T. On zeros of analytic functions in half Plane. Acta Math Sci, 2006, 26A(1): 45-48.

同被引文献7

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部