期刊文献+

非均匀材料反平面裂纹问题的特征函数

The eigen-functions of anti-plane crack problems in non-homogeneous materials
原文传递
导出
摘要 针对非均匀材料的线弹性断裂力学基本理论问题,从理论上探讨了将均匀材料的特征函数结构即Williams解推广到非均匀材料的合理性;并以反平面问题为例,给出了该问题任意阶特征函数的定解方程;进一步给出了非均匀材料反平面问题的Williams型解.该特征函数解从理论上揭示了非均匀性对裂纹尖端场结构的影响. For the basic elastic fracture mechanics problems, we discussed the reasonability of introducing the Williams' solution of homogeneous materials to non-homogeneous materials in this paper. Taking the anti-plane crack problem as an example, we give its governing equations for arbitrary order eigen-function, and provide the Williams' solution for anti plane crack problem in non-homogeneous materials. This eigen-function theoretically reveals the effect of non-homogeneity on the structure of crack tip field.
机构地区 装甲兵工程学院
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2012年第8期852-860,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:11172332)
关键词 特征函数 非均匀材料 Williams解 裂纹尖端场 eigen-function, non-homogeneous materials, Williams solution, crack-tip field
  • 相关文献

参考文献21

  • 1Williams M L. On the stress distribution at the base of a stationary crack. J Appl Mech, 1957(24): 109-114.
  • 2黄旭涛,严密.功能梯度材料:回顾与展望[J].材料科学与工程,1997,15(4):35-38. 被引量:50
  • 3Lanutti J J. Functionally graded materials properties potential and design guidelines. Compos Eng, 1994, 24(4): 81-94.
  • 4Wang B L, Mai Y W, Noda N. Fracture mechanics analysis model for functionally graded materials with arbitrarily distributed properties. Int J Fract, 2002, 116:161-177.
  • 5Chen Y F, Erdogan F. The interface crack problem for an inhomogeneous coating bonded to a homogeneous substrate. J Mech Phys Solids, 1996, 44(5): 771-787.
  • 6Marur P R, Tippur H V. Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int J Solid Struct, 2000, 37(35): 5353-5370.
  • 7Jin Z H, Batra R C. Interface cracking between functionally graded coatings and a substrate under antipla:ae shear. Int J Eng Sci, 1996, 34(15): 1705-1716.
  • 8Tippur H V, Krishnaswamy S, Rosakis A J. A coherent gradient sensor for crack tip deformation measurements analysis and experimental results. Int J Fract, 1991, 48(2): 193-204.
  • 9Rousseau C E, Tippur H V. Evaluation of crack tip fields and stress intensity factors in functionally graded elastic material cracks parallel to elastic gradient. Int J Fract, 2002, 114(1): 87-111.
  • 10Butcher R J, Rousseau C E, Tippur H V. A functionally graded particulate composite preparation measurements and failure analysis. Acta Mater, 1999, 47(1): 259-268.

二级参考文献7

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部