期刊文献+

Wreath Hurwitz numbers,colored cut-and-join equations,and 2-Toda hierarchy 被引量:1

Wreath Hurwitz numbers,colored cut-and-join equations,and 2-Toda hierarchy
原文传递
导出
摘要 Let G be arbitrary finite group,define H G· (t;p +,p) to be the generating function of G-wreath double Hurwitz numbers.We prove that H G· (t;p +,p) satisfies a differential equation called the colored cutand-join equation.Furthermore,H G·(t;p +,p) is a product of several copies of tau functions of the 2-Toda hierarchy,in independent variables.These generalize the corresponding results for ordinary Hurwitz numbers. Let G be arbitrary finite group, define H·G(t;p+,p ) to be the generating function of G-wreath double Hurwitz numbers. We prove that H·G(t; p+,p-) satisfies a differential equation called the colored cut- and-join equation. Furthermore, H·G(t;p+,p-) is a product of several copies of tau functions of the 2-Toda hierarchy, in independent variables. These generalize the corresponding results for ordinary Hurwitz numbers.
出处 《Science China Mathematics》 SCIE 2012年第8期1627-1646,共20页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.10425101,10631050) National Basic Research Program of China(973Project)(Grant No.2006cB805905)
关键词 Hurwitz number wreath product cut-and-join equation integrable hierarchy Hurwitz 层次结构 微分方程 切口 着色 tau蛋白 生成函数 独立变量
  • 相关文献

参考文献31

  • 1Abramovich D, Graber T, Vistoli A. Gromov-Witten theory of Deligne-Mumford stacks. Amer J Math, 2008, 130: 1337-1398.
  • 2Aganagic M, Dijkgraaf R, Klemm A, et al. Topological strings and integrable hierarchies. Comm Math Phys, 2006, 261:451-516.
  • 3Aganagic M, Klemm A, Marifio M, et al. The topological vertex. Comm Math Phys, 2005, 254:425-478.
  • 4Borot G, Eynard B, Mulase M, et al. A matrix model for simple Hurwitz numbers, and topological recursion. J Geom Phys, 2011, 61:522-540.
  • 5Chen L. Bouchard-Klemm-Marifio-Pasquetti conjecture for C3. arXiv:0910.3739.
  • 6Chen W, Ruan Y. Orbifold Gromov-Witten theory. In: Orbifolds in Mathematics and Physics. Contemp Math, 310 Providence, RI: Amer Math Soc, 2002, 25-85.
  • 7Chen L, Li Y, Liu K. Localization, Hurwitz numbers and Witten conjecture. Asian J Math, 2008, 12:511 518.
  • 8Dijkgraaf R. Mirror symmetry and elliptic curves. In: Dijkgraaf R, van der Geer G, eds. The Moduli Space of Curves Prog in Math, 129. Boston: Birkhaiiser, 1995.
  • 9Donaldson S. Riemann Surfaces. Oxford: Oxford University Press, 2011.
  • 10Ekedahl T, Lando S, Shapiro M, et al. Hurwitz numbers and Hodge integrals. C R Acad Sci Paris Ser I Math, 1999, 328:1175-1180.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部