期刊文献+

基于小生境遗传算法的风力机叶片优化设计 被引量:4

OPTIMIZATION DESIGN OF WIND TURBINE BLADES BASED ON NICHED GENETIC ALGORITHMS
下载PDF
导出
摘要 研究了经典遗传算法在风力机叶片优化设计中的局部收敛和"进化停滞"问题,提出基于共享机制的自适应小生境技术的改进方法。应用此算法,系统研究了不同光顺过程、设计目标和叶尖速比条件对1.5MW变桨恒频大型风力机叶片优化设计的影响。结果表明,采用先光顺后寻优的设计方法,能有效减小叶片质量和增大年发电量;以年发电量最大为目标设计的叶片虽然能少量提高年发电量,但是以提高风轮的整体实度为代价;在给定风场条件,年发电量随叶尖速比增大是一个先增后减的过程,由此可确定最佳叶尖速比。 A novel genetic algorithm coupled with an adaptive, sharing and niche technology was developed for the optimization design of wind turbine blades to avoid the only local convergence and "evolutionary stagnation" which occur usually in simple genetic algorithm. This approach is then applied to design a series of 1.5MW variable speed pitch regulated wind turbine blades to investigate the effects of various smoothing procedures, various design targets and tip speed ratios. The results showed that smoothing prior to optimization can effectively reduce blade mass and increase annual energy production. When the annual energy production is taken as the optimization target, the blade design leads to a little increase in the energy production but at a cost of slightly higher blade solidity com- pared to the method of maximum power coefficient. In a given wind condition, the annual power production is first increased and then decreased with tip speed ratio increase. Therefore, the optimal tip speed ratio can be taken the value at which the maximum annual energy is produced.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第7期1100-1105,共6页 Acta Energiae Solaris Sinica
基金 国家重点基础研究发展(973)计划(2007CB714600) 江苏省创新学者攀登项目(BK2008044) 江苏省普通高校研究生科研创新计划(CX09B_069Z)
关键词 风力机 叶片优化设计 遗传算法 小生境技术 wind turbine blade optimization design genetic algorithm niche technology
  • 相关文献

参考文献9

  • 1Wilson R E, Lissaman P D S. Applied aerodynamics of wind power Machines [ R ]. Corvallis : Oregon State Uni- versity, 1974.
  • 2Selig M S, Coverstone-Carroll V L. Application of a ge- netic algorithm to wind turbine design[ J]. ASME Journal of Solar Energy Engineering, 1996, 118 ( 1 ) : 22--29.
  • 3Giguere P, Selig M S. Desirable airfoil characteristics for large variable-speed horizontal axis wind turbines [ J ]. Journal of Solar Energy Engineering, 1997, 119 ( 3 ) : 253--261.
  • 4Goldberg D E. Genetic algorithms in search, optimization and machine learning[ M]. New York: Addison-Wesley, 1989.
  • 5Goldberg D E, Richardsion J. Genetic algorithms with sharing for multimodal function optimization [ A ]. Pro- ceedings of the Second International Conference on Genet- ic Algorithms [ C ] , N J: Lawrence Erlbaum Associates, 1987, 41-49.
  • 6Holland J H. Adaptation in natural and artificial systems [ M]. Annarbor: University of Michigan Press, 1975.
  • 7Srinivas M, Patnaik L M. Adaptive probabilities of cross- over and mutations in GAs [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24 (4): 656-- 667.
  • 8Griffin D A, Zuteck M D. Scaling of composite wind tur- bine blades for rotors of 80 to 120 meter diameter[ J]. Journal of Solar Energy Engineering, 2001, 123 ( 4 ) : 310--319.
  • 9Bossanyi E A. Wind turbine control for load reduction [J]. Wind Energy, 2003, 6(3) : 229--2d4.

同被引文献54

  • 1刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800. 被引量:105
  • 2Hansen M O L. Aerodynamics of Wind Turbines[ M]. London: Earthscan, 2008.
  • 3Blazek J. Computational Fluid Dynamics: Prineiples and Applications [ M ]. London: Elsevi- er, 2006.
  • 4Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number [ J ]. Journal of Fluid Mechanics, 1987, 177: 133 - 166.
  • 5Churchfield M, Li Y, Moriarty P. A large-eddy simulation study of wake propagation and pow- er production in an array of tidal-current turbines[ R]. National Renewable Energy Laboratory report, NREL/CP-5000-51765, 2011.
  • 6Wu Y T, Port-Agel F. Large-eddy simulation of wind-turbine wakes: evaluation of turbine pa- rametrisations [ J ]. Boundary-Layer Meteorol, 2011, 138 (3) : 345- 366.
  • 7Simms D, Schreck S, Hand M, Fingersh L J. NREL unsteady aerodynamics experiment in the nasa-ames wind tunnel: a comparison of predictions to measurements [ R ]. National Renew- able Energy Laboratory Report, NREL/TP-500-29494, 2001.
  • 8Sorensen N N, Michelsen J, Schreck S. Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft120 ft wind tunnel[J]. Wind Energy, 2002, 5(2/3) : 151-159.
  • 9Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective op- timization [ C ]//Proceedings of the First IEEE Conference on Evolutionary Computation. New Jersy: IEEE Press, 1994: 82-87.
  • 10Deb K, Agrawal S, Pratab A, Meyarivan T. A fast elitist non-dominated sorting genetic algo- rithm for multi-objective: NSGA-II [ J ]. Evolutionary Computation, 2002, 6 (2) : 182-197.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部