摘要
针对污水处理中某些生物参数难以在线测量的情况,本文提出了一种基于小波核的多尺度最小二乘小波支持向量机软测量建模方法:。首先,选取墨西哥草帽小波函数作为最小二乘支持向量机的核函数,进而设计出多尺度小波最小二乘支持向量回归机(MW-LSSVR)。然后利用该支持向量机和出水水质参数特性建立混合软测量模型,实现对出水BOD浓度、COD浓度在线预测。通过在实际污水处理过程的应用,结果:表明本建模方法:具有较高的预测精度和较快的模型学习速度,能对BOD的做出准确的预测,一定程度上可以替代某些昂贵的在线测量仪表,给污水处理厂工作人员提供了控制操作依据,具有一定的实际应用价值。
To solve the problem that some parameters are difficult to be measured on-line in the process of waste water disposal, a soft measurement modeling method is presented base on multi-scale wavelet least square support vector machine in this Paper. Mexican-hat wavelet function is used as the support vector kernel function, and further the Multi-scale Wavelet Least square Support Vector Regression (MW-LSSVR) algorithm is presented. Build an advanced model with above SVR and characteristics between BOD&COD, predicting BOD&COD of drainage that had been treated. Through using this method in practical sewage disposal process, the result shows that this modeling method has higher precision and faster learning speed of BOD model, can make accurate predictions, can replace online measuring instrument in some expensive, provide control operation basis to the sewage treatment plant workers, and has a certain practical value.
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2012年第7期797-800,共4页
Computers and Applied Chemistry
基金
国家自然科学基金资助项目(61173071)
河南省高校创新人才支持计划项目(2012HASTIT011)
河南省科技攻关计划项目(112102210412
102102210176)
河南师范大学博士启动基金项目(1039)
关键词
小波
最小二乘支持向量机
多尺度学习
污水处理
wavelet, least square wavelet support vector machine, multi-scale regression, sewage disposal