期刊文献+

基于证据理论的状态估计方法及其在液位估计中的应用

State estimation based on DS theory:application to liquid level estimation
原文传递
导出
摘要 本文给出了一种基于证据理论的迭代算法估计噪声有界下的动态系统状态,并将其应用于工业液位仪的液位动态估计当中。该算法将系统的状态方程、观测方程及实际观测看作提供证据的3个信息源,利用证据的随机集表示及随机集扩展准则从信息源中构造关于系统状态和观测的证据:通过相关证据融合方法:将所构造的证据进行融合,并利用Pignistic期望从融合结果中计算出状态估计值。与基于置信函数的前反向传播算法相比,所提算法中的融合过程增加了估计的聚焦程度,使得估计结果更加精确。通过在液位估计中的应用说明新算法可以使得估计的相对误差提高约0.3个百分点。 This paper presents an iterative algorithm based on evidence theory to solve dynamic system state estimation problem under the bounded noise. This algorithm regards the state equation of the system, the observation equation and actual observation as three sources of information for providing evidences. It uses evidence description of random set and extension principles of random set to construct state evidence and observation evidence from sources of information. Furthermore, in this algorithm, the proposed evidence combination of dependence evidence is used to fuse those constructed evidence and Pignistic expectation of fusion results is calculated as value of state estimation. Compared with the estimation algorithm based on belief function and forward-backward propagation, our method increases the focus of state estimation, and makes the estimation results more accurate. Finally, through the application in the liquid level estimation that the new algorithm can make the relative error of the estimation increases about 0.3%.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第7期801-806,共6页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(61004070 61104019 61034006 60934009)
关键词 证据理论 随机集理论 状态估计 液位仪 Dempster-Shafer (DS) evidence theory, state estimation, Random set theory, liquid level apparatus
  • 相关文献

参考文献15

  • 1Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1):35-45.
  • 2Gordon N J, Salmond D J, Smith A F M. Novel approach to Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 1993, 140(2):107-113.
  • 3Bertsekas D, Rhodes I. Recursive state estimation for a set- membership description of uncertainty. Automatic Control, IEEE Transactions on, 1971, 16(2):117-128.
  • 4Makarov D G, Norton J P. State bounding with ellipsoidal set description of the uncertainty. International Journal of Control, 1996, 65(5):847-866.
  • 5Servi L, Ho Y. Recursive estimation in the presence of uniformly distributed measurement noise. Automatic Control, IEEE Transactions on, 1981, 26(2):563-565.
  • 6Gning A, Bonnifait P. Constraints propagation techniques on intervals for a guaranteed localization using redundant data. Automatica, 2006, 42(7): 1167-1175.
  • 7Nassreddine G, Abdallah F, Denoux T. State estimation using interval analysis and belief-function theory: application to dynamic vehicle localization, systems, man, and cybernetics, Part B: Cybernetics, IEEE Transactions on, 2010, 40(5):1205-1218.
  • 8Dempster A. Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics. 1967, 38(2):325-339.
  • 9Wu Yongge, Yang Jingyu, Liu Ke. On the evidence inference theory. Information Sciences, 1996, 89(3-4):245-260.
  • 10Dubois D, Prade H. Random sets and fuzzy interval analysis. Fuzzy Sets and Systems, 1991, 42(1):87-101.

二级参考文献28

  • 1彭冬亮,文成林,徐晓滨,薛安克.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204. 被引量:24
  • 2Yunmin Zhu,X Rong Li. Extended dempster-shafer combination rules based on random set theory [ J ]. Proceedings of SPIE,2004,5434:112 - 120.
  • 3Mahler R. Representing rules as random sets, I: statistical correlations between rules [ J ]. Information Sciences, 1996, 88 (22) :47 - 68.
  • 4Mahler R, Leavitt J,et al. Nonlinear filtering with really bad data[ A], Part of the SPIE conference on signal processing, sensor fusion, and target recognition [ C ], America: SPIE,2001.59 - 70.
  • 5I R. Fuzzy sets as equivalence classes of possibility random sets [ A ]. Fuzzy Sets and Possibility Theory: Recent Developments[ C] ,New York:Pergamon Oxford Press, 1982. 327 - 343.
  • 6Goodman I R, Nguyen H T, Walker E A. Conditional inference and logic for intelligent systems-a theory of measure-free conditioning [ M ]. New York: Amsterdam North-Holland Press, 1991.
  • 7Lewis D. Probabilities of conditionals and conditional probabilities[ J] ,Philos. Review, 1976,85(3) :297 - 315.
  • 8Goodman I R, Kramer G F. Extension of relational and conditional event algebra to random sets with applications to data fusion, random set theory and applications[ M], New York: Springer Press, 1997,209 - 243.
  • 9Chenglin Wen , Xiaobin Xu. Random sets in data fusion: a new framework for multitarget tracking [ A ]. Proceedings of the 2006,1 st International Symposium on Systems and Control in Aerospace and Astronautics[ C], Harbin China: ISSCAA, 2006,999- 1004.
  • 10Maler R. Statistical multisource-mulfitarget information fusion [ M ]. Boston: Artech House Publishers, 2007.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部