期刊文献+

基于黄金分割法的加速MARS研究 被引量:1

Fast MARS Based on Golden Section Method
下载PDF
导出
摘要 多元自适应回归样条法(Multivariate adaptive regression spline,MARS)是一种专门针对高维数据拟合的回归方法。该方法以样条函数的张量积作为基函数,以样本数据坐标作为可选的节点矢量值,算法过程以失拟度(Lack of fit,LOF)最小为目标优化选择基函数和节点矢量。提出了基于黄金分割的加速MARS算法,引入一维黄金分割搜索算法及计算子区间概念,以提高算法节点矢量和基函数的优化选择效率。最后,四个典型的测试算例验证了所提出的方法在保证模型近似精度的前提下可大幅节省模型构造时间。 Multivariate adaptive regression spline is a regression method with strong ability to generalize specifically for high-dimensional data. MARS uses the tensor product of the splines as basis functions, and takes the sample data coordinate as an optional knot. The process of choosing basis functions and knots targets the minimization of lack-of-fit criterion. An improved algorithm was proposed based on golden section search: The original strategy was replaced by linear golden section search methods, and the concept of calculation intervals was introduced in order to improve the efficiency of the knot and basis function optimization. Several examples were enumerated to illustrate this new method could ensure the model's accuracy and save considerable modeling time.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第8期1561-1566,共6页 Journal of System Simulation
基金 国家自然科学基金(50775084)
关键词 多元自适应回归样条 黄金分割法 失拟度 节点矢量优化 计算子区间 multivariate adaptive regression spline golden section search lack of fit knots optimization calculation interval
  • 相关文献

参考文献12

  • 1Lewis P A, Stevens J G. Non-linear modeling of time series using multivariate adaptive regression splines [J]. American Statistical Association (S0162-1459), 1991, 86(416): 864-877.
  • 2Scott Crino, Donald Brown. Global Optimization with Multivariate Adaptive Regression Splines [J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics (S1083-4419), 2007, 37(2): 333-340.
  • 3Perrone L F, Wieland F P, Liu J. American option from MARS [C]// Proceeding of the 2006 Winter Simulation Conference. USA: School of Operation Research and Industrial Engineering in Cornell University, 2006: 719-141.
  • 4Friedman J H. Multivariate adaptive regression splines [J]. The Annals of Statistics ($0090-5364), 1991, 19( 1): 1-141.
  • 5Breiman L, Friedman J H, Olshen R A. Classification and regression trees [R]. Wadsworth, Blemont, Calif, USA, 1984.
  • 6Friedman J H, Stuetzle. Projection pursuit regression [J]. American statistical association (S0162-1459), 1981, 76(1): 817-823.
  • 7Friedman J H. Fast MARS [R]. Stanford, USA: Department of Statistics and Stanford Linear Accelerator Center, Stanford University, 1993.
  • 8Bakin S, Hegland M, Osborne M. Can MARS be improved with B-splines? [M]. New Jersey, USA: Computational Techniques and Applications Conference, 1998: 75-82.
  • 9Richardson S, Wang S, Jennings L S. A multivariate adaptive regression B-spline algorithm (BMARS) for solving a class of nonlinear optimal feedback control problems [J]. Automatic (S0018-9286), 2008, 44: 1149-1155.
  • 10Friedman J H, Silverman B W. Flexible parsimonious smoothing and additive modeling [J]. Techno metrics ($0040-1706), 1989, 31(1): 3-21.

共引文献18

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部