期刊文献+

一种用于轮廓线探测的CNN改进算法 被引量:6

Modified CNN Algorithm for Contour Detection
下载PDF
导出
摘要 图像中目标物体的轮廓探测是目标识别和计算机视觉系统的第一步也是关键一步。提出了一种基于细胞神经网络(Cellular Neural Network,CNN)的轮廓线探测改进算法。该算法中CNN模板参数(模板系数)是根据局部窗口内各像素与中心像素间的灰度和空间关系计算的,即模板参数的计算不仅考虑了局部窗口内各像素与中心像素的灰度值差异,而且顾及了窗口内各像素与中心像素间的空间距离。实验结果表明,相对于其它两种轮廓探测算法,提出算法的探测效果较好。 Contour detection of object from image is the first and crucial step in computer vision and object recognition system. A modified contour detection algorithm was proposed based on cellular neural network (CNN). In proposed algorithm, the template parameters (template coefficients) of CNN were calculated according to the gray-scale and spatial relationship between the central pixel and the other neighboring pixels in the current local window, i.e., computation of template parameters considers both gray value difference and spatial distance between the central pixel and the other neighboring pixels in current local window. Experimental results show that the proposed algorithm has better detection performance than other two contour detection algorithms.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第8期1629-1632,共4页 Journal of System Simulation
基金 中国博士后科学基金(20090451167)
关键词 轮廓探测 细胞神经网络 模板 模板参数 contour detection cellular neural network template template parameters
  • 相关文献

参考文献9

  • 1Gonzalez R C, Woods R E. Digital Image Processing [M]. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.
  • 2Yuen P C, Feng G C, Zhou J P. A Contour Detection Method: Initialization and Contour Model [J]. Pattem Recognition Letters (S0167-8655), 1999, 20(2): 141-148.
  • 3Canny J. A Computational Approach to Edge Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1986, 8(6): 679-698.
  • 4Chua L O, Yang L. Cellular Neural Networks: Theory and Applications [J]. IEEE Transactions on Circuits and Systems (S0098-4094), 1988, 35(10): 1257-1290.
  • 5Chua L O. CNN: A Vision of Complex [J]. International Journal of Bifurcation and Chaos (S1793-6551), 1997, 7(10): 2219-2425.
  • 6Chua L O, Roska T. Cellular Neural Networks and Visual Computing [M]. London, UK: Cambridge Press, 2002.
  • 7Zang H Y, Li G D, Min L Q, et aL Design for Robustness Counter Detection CNN with Applications [C]// International Conference on Communications, Circuits and Systems, Hong Kong, China. USA: Institute of Electrical and Electronics Engineers Computer Society, 2005, 2: 953-958.
  • 8Yuan-Hui Yu, Chin-Chen Chang. A New Edge Detection Approach Based on Image Context Analysis [J]. Image and Vision Computing (S0262-8856), 2006, 24(10): 1090-1102.
  • 9李国东,臧鸿雁,王江河,洪慧闻,刘燕玲,闵乐泉.基于CD细胞神经网络的肝脏B超图像数据挖掘[J].中国临床康复,2006,10(25):121-123. 被引量:2

二级参考文献1

共引文献1

同被引文献70

  • 1刘黎平,张鸿发,王致君,宋新民.利用双线偏振雷达识别冰雹区方法初探[J].高原气象,1993,12(3):333-337. 被引量:70
  • 2杨金祥,钟守铭,鄢克雨.Stability for Cellular Neural Networks with Delay[J].Journal of Electronic Science and Technology of China,2005,3(2):123-125. 被引量:1
  • 3黄传军,汪海明,肖涛,等.一种新的细胞神经网络算法在图像处理中的应用[C].成都;中国行同学会第五届信号与信息处理学术会议,2001.
  • 4朱大奇,史惠.人工神经网络导论[M].北京:高等教育出版社.2001.
  • 5田岩,彭复员.数字图像处理与分析[M].华中科技大学出版社,2009:55-75.
  • 6Chua L O. CNN: A Vision of Complex [J]. International Journal of Bifurcation and Chaos (S1795-6551), 1997, 7(10): 2219-2425.
  • 7Z.J. Hou, G.W. Wei, A new approach to edge detection, Pattern Recognitfon 55 (7) (2002) 1559-1570.
  • 8J. Cui, Traffic Prediction B&sed on Improved Neural Network, JOlT : Journal of Convergence information Technology, Vol. 5, No. 9, pp. 85-89, 2010.
  • 9苑玮琦,李雪.一种边缘检测效果评价方法的研究[J].微计算机信息,2007,23(33):304-305. 被引量:6
  • 10Guo H W, Zhao Z. Nonlinearity correct ion in digit al fringe project ion profilome try by using HSItogram matching technique[J]. Proceedings of S PIE,2007,6616:211-219.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部