摘要
针对跟踪中多目标数据关联问题,在蚁群数据关联(ACDA)算法的基础上,提出了一种自适应蚁群数据关联方法,通过对转移概率和信息素持续度的自适应调整,改进了全局信息素更新,有效地避免了陷入局部最优问题。仿真实验证明:该算法在解决多目标数据关联问题上是行之有效的。
Aimed at the problem of multi-target data association in tracking, an adaptive ant colony data association (ACDA) method on the basis of ACDA is proposed. This algorithm improves global pheromone refreshment and avoids falling in to problem of local optimization by adaptively adjust the transition probability and the pheromone adherence. The simulation results show that this algorithm is effective on solving the data association problem of multi-target.
出处
《传感器与微系统》
CSCD
北大核心
2012年第8期27-29,共3页
Transducer and Microsystem Technologies
基金
陕西省电子信息系统综合集成重点实验室基金资助项目(201107Y03)
关键词
多目标跟踪
蚁群数据关联
蚁群算法
muhi-target tracking
ant colony data association(ACDA)
ant colony algorithm