期刊文献+

广义K阶Lucas数构成的矩阵的行列式

On Determinants of Matrices with Order-k Generalized Lucas Numbers
下载PDF
导出
摘要 用矩阵方程的形式表示了广义k阶Lucas递归序列,并利用广义k阶Lucas数的性质及矩阵的初等变换方法计算了由广义k阶Lucas数构成的矩阵的行列式.所定义的广义k阶Lucas序列中只要将系数c1取特定值,不论是否有n>0的条件都不改变由广义k阶Lucas数构成的矩阵的行列式,行列式的值只依赖于系数ck。 The generalized order-k Lucas linear recurrence sequence is presented in matrix equation ; Furthermore, according to the properties of the generalized order-k Lucas numbers and elementary operations of matrix, the determinants of matrices obtained by the general- ized order-k Lucas numbers are computed. As long as the first coefficient of a specific val- ue, the determinants are not changed regardless of whether a condition n 〉 0 in the defini- tion of the generalized order-k Lucas sequence, they are only dependent on the last coeffi- cient.
出处 《沈阳理工大学学报》 CAS 2012年第4期57-59,共3页 Journal of Shenyang Ligong University
关键词 广义k阶Lucas数 矩阵 行列式 generalized order-k Lucas number matrix determinant
  • 相关文献

参考文献4

  • 1F. M. Williams, N. Sloane. The Theory of Error Correc- ring Codes[ M]. North-Holland, Amsterdam, 1977.
  • 2A. J. Martin, M. Rem. A Presentation of the Fibonacci Algorithm [ J ]. Inform. Process. Lett, 1984,19 (2) :67 - 68.
  • 3M. C. Er. Sums of Fibonacci Numbers by Matrix Meth- ods [ J ]. The Fibonacci Quarterly, 1984,22 ( 3 ) : 204 - 207.
  • 4E. Karaduman. An Application of Fibonacci Numbers in Matrices [ J ]. Applied Mathematics and Computation, 2004,147 ( 3 ) :903 - 908.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部