期刊文献+

一维含时受迫阻尼量子谐振子的严格解 被引量:1

Rigorous Solution of One-dimensional Time-dependent Forced Damped Quantum Harmonic Oscillator
下载PDF
导出
摘要 运用广义线性量子变换普遍理论求解一维含时受迫阻尼谐振子,给出了系统演化算符、传播子、波函数的严格表达式,研究了坐标和动量的期望值和量子涨落,结果表明阻尼谐振子对于坐标和动量都有压缩效应,阻尼越强压缩效应越强. The generalized linear quantum transformation theory is used to solve one-dimensional forced damped harmonic oscillator. The rigorous expressions of the system evolution operator, the propagator and wave function are given, and the expected value and quantum fluctuation of coordinate and momentum are calculat- ed. The results show that the damped harmonic oscillator have a compression effect to coordinate and momen- tum,and the stronger the damping,the stronger the compression effect.
出处 《鲁东大学学报(自然科学版)》 2012年第3期235-241,共7页 Journal of Ludong University:Natural Science Edition
关键词 受迫阻尼谐振子 线性量子变换 压缩效应 forced damped harmonic oscillator linear quantum transformation squeezing effect
  • 相关文献

参考文献14

  • 1Mostafazadeh A. Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator[ J ]. J Phys A :Math Gen, 1998,31 (30) :6495 - 6503.
  • 2Lee M H. Exact Schrodinger wave functions of N-coupled time-dependent harmonic oscillators[ J ]. J Phys A:Math Gen, 2001,34 ( 44 ) : 9475 - 9484.
  • 3Lewis H R. Class of Exact Invariants for Classical and Quantum Time-Dependent Harmonic Oscillators [ J ]. J Math Phy, 1968,9 : 1976 - 1986.
  • 4Pedrosa I A. Exact wave functions of a harmonic oscillator with time-dependent mass and frequency [ J ]. Phys Rev A, 1997,55 ( 4 ) : 3219 - 3221.
  • 5Malkin I A,Man' ko V I. Coherent states and excitation of N-dimensional non-stationary forced oscillator [ J ]. Phys Lett A,1970,32(4) :243 -244.
  • 6Ji J Y, Hong J. Heisenberg picture approach to the invariants and theexaet quantum motions for coupled parametric oscil- lators [ J ]. J Phys A : Math Gen, 1998,31 ( 39 ) : L689 - 13593.
  • 7Nieto M M,Truax D R. Displacement-operator squeezed states. I. Time-dependent systems having isomorphic symmetry al- gebras [ J 1. J Math Phys, 1997,38 : 84 - 97.
  • 8Khandekar D C, Lauwande S V. Exact propagator for a time-dependent harmonic oscillator with and without a singular per- turbation[ J ]. J Math Phys, 1975,16 (2) :384 - 388.
  • 9Li Tijun. Exact wave functions and coherent states for a forced damped harmonic oscillator[J]. Rep Math Phys,2008,62 (2) :157 - 165.
  • 10彭桓武.阻尼谐振子的量子力学处理[J].物理学报,1980,29(8):1084-1088.

二级参考文献11

  • 1Zhang Yong-de, Tang Zhong. General theory of linear quantum transformation of Bargmann-Fock space [J ]. Nuovo Cimento, 1994, 109(4):387--401.
  • 2Zhang Yong-de, Tang Zhong. Linear quantum transform theory in Bargmann--Fock space and its preliminary applications [J]. Commun Theor Phys, 1995, 23:57-64.
  • 3Xu Xiu-wei, Zhang Yong-de. Various-ordering expressions of general exponential quadratic operators in multimode Boson system [J]. Chin Phys Lett, 1997,14(11) : 812--815.
  • 4Yu Si-xia, Zhang Yong Yong-de. Linear quantum tranformation theory of multi--mode Boson and its application to calculation of partition function[J ]. Commun Theor Phys, 1995,24 : 185-190.
  • 5Pan Jian-wei, Yu Si-xia, Zhang Yong-de, et al. Quantum statistics for general quadratic system [J ]. Commun Theor Phys, 1999, 31 : 121--126.
  • 6Xu Xiu-wei, Zhang Yong-de, Hou Guang. General solution for multi- dimensional time- dependent coupled quantum oscillator [J ] Nuovo Cimento, 2001, 116 (6) : 713--718.
  • 7Xu Xiu-wei. Exactly solving a two-dimensional timedependent coupled quantum oscillator [J ]. J Phys A: Math Gen 2000, 33:2 447--2 452.
  • 8徐秀玮,柳盛典,任廷琦,张永德.含时谐振子的演化算符和波函数[J].物理学报,1999,48(9):1601-1604. 被引量:20
  • 9徐秀玮,赵继德,任廷琦.多维相空间中任意指数二次型算符的矩阵元[J].物理学报,2000,49(1):17-19. 被引量:6
  • 10XU Xiu-wei,ZHANG Yong-de.Two Theorems for General n-Mode Boson Exponential Quadratic Operators[J].Chinese Physics Letters,1997,14(11):812-815. 被引量:5

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部